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Abstract

‘We present a new ordering rule for the newsboy problem where besides
mean and variance of demand, the probability that the demand assuming
the value zero is also known. We derive a lowerbound for the expected
profit over the set of distributions with given parameters and construct
a distritmtion which achieves the bound. We apply our analysis to an
M/G/1 queue with server vacations, which is the base model for many
production-inventory systems.
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1 Introduction

The newsboy problem is to decide the stock quantity of an item when there is
& single purchasing opportunity before the start of the selling period and the
demand for the item is random. The trade off is between the risk of overstock-
ing, which results in disposal at a price below the unit purchasing cost and the
risk of understocking, which results in loss of opportunity for making a profit.
For a discussion on the newsboy problem, see Nahmias [4]. In this problem,
however, the optimal stock that maximizes the expected revenue depends on the
complete distribution of the demand variable and in most cases, information on
the distribution of demand is very limited.

However, lower bounds on expected profit can be obtained as a function of the
mean and variance of the demand variable only. One such bound is due to Scarf
[5] which surprisingly did not receive much attention until its recent resurrection
in the works of Gallego and Moon (3]. It is also possible to identify a (unique)
distribution which achieves the bound and study the influence of parameters on
the expected profits in the worst case scenario.

Extending the above studies further, we analyze the lower bound on objective
value in the case when partial information pertaining to the distribution is made
available. Here in particular we analyze the case when probability of zero demand
is known. The relevance of such analysis can be articulated in many contexts
which include inventory management in manufacturing systems.

Motivation for our study comies from inventory control framework of any
production-inventory system where the newsboy model is commonly used for
analysis. Further, in a single stage multi-class production-inventory system, a
problem of interest is to find optimal production sequence and base stock levels
for various classes of items in the presence of backorder and holding costs. The
dynamics of such systems are, in general, modeled using a single server queue
with server vacations. However, in most cases, it is only possible to compute
moments of various quantities of interest, such as short fall (inventory level - base
stock level). With the knowledge of these moments, one can directly apply the
solution to the distribution free newsboy model to determine approximate base
stock levels. For instance, see Federgruen and Katalan {2] for a similar proce-
dure. It is interesting to note that, in the previous scenario, it is also possible to
compute, in addition to moments, the steady state probability of shortfall taking
the value zero. The details of computation of this probability are presented in
the sequel with reference to M/G/1 queue with server vacations. Since our anal-
ysis provides a tighter bound on the objective value, one can arrive at a better
estimate of base stocks in the cases discussed above compared to the base- stocks
derived using just the knowledge of moments.

This paper is organized as follows. In Section 2, we describe the newsboy
problem framework in detail. In Section 2.1, we provide a lower bound on the
expected profits over the set of distributions having same mean, variance and
which assign same mass at zero. We construct the worst case distribution in
Theorem 2. Our construction procedure is based on very simple and intuitive ar-



guments. Subsequently, we compute the optimal profits and corresponding stock
order quantity. Section 2.3 provides a numerical example. Since in many multi-
class single stage production- inventory systems discuss an M/G/1 queue model
with server vacations and derive the expression for the steady state probability
of queuelength assuming the value zero.

2 Problem Description and Analysis

For the sake of completeness, we give a formal description of the newsboy problem.
We follow the notation used in [3] for our presentation.

The newsboy problem is to determine optimal stock of an item when there
exists a single purchasing opportunity before selling can start. The demand for
the item is random. An item remaining unsoid at the end of the period has a
salvage value less than the unit cost of purchase. Let

c>0 : the unit cost

p=cl+m)>c : the unit selling price

s=(1-d}c<ec : the unit salvage value

n : the expected demand

o : the standard deviation of the demand
A} : the probability that demand is zero
Q : the order quantity

Note that the mark-up m(discount d} is a positive parameter that indicates
the return(loss) per dollar on units sold(unsold). Let D denote the random de-
mand. Assume that no information regarding the distribution of D, but for its
mean g, standard deviation ¢ and the probability & that the demand is zero, is
known. Let the class of distributions with the known parameters be denoted by
G. In what follows, 2% := maz|z, 0).

For any given distribution of demand, G € G, and for any order quantity Q,
expected profit can be written as .

7%(Q) = pE[min(Q, D))+ sE(Q — D" — cQ (2.1)

where min(Q, D) corresponds to number of units sold and {Q — D)* corresponds
to number of units salvaged.
Observe that,

min(Q,D) = D~-(D-Q)*
@-D)* = (@-D)+(D-Q)7

Thus, the expected profit in (2.1) can be rewritten as

Q) = (p—9)u—(c~s)Q - (p—s)E[D - Q}*
= 7%(Q) = cf(m+d)p—dQ— (m+d)ED-Q|*} (2.2)
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Hence, maximizing the expected profit given by (2.2) is equivalent to minimizing

I%(Q) :=dQ + (m+ )E[D — QJ* (2.3)

If the distribution of the demand is completely known, the optimal order quantity,
%, which maximizes (2.2) is given by:

m

* = : : >
Q: min{k : P(D < k) 2 T d

} - (24)

In the absence of complete knowledge of the distribution of D, it would be
useful to derive a lower bound on the expected profit and analyze (2.2) when the
bound is achieved by any distribution in G. With this perspective, we address the
problem of finding the expected profit for the worst possible distribution (which
achieves the lower bound referred to above) in G.

2.1 Analysis

In the following we derive an upperbound for the expected value of (D-@Q)* and
construct a distribution which lies in G for which the bound is tight.

Theorem 2.1 Under any distribution G € G, the following holds for all @ > 0

6Q + /(1 ~ 8)(0? + (Q — p)? - Q%) + (1 ~ Q)

ED-Q* < - (25)
Proof
First, note that
(D - Q)+ |D - Q| ';(D - Q) (2.6)
_ ) Q wp. é
D -Qi= { Y wp. (1—6)
for some random variable Y.
It follows that,
Var(iD - Q}} > 61 -8} (ElY] - Q)? (2.7)
Furtler,
E(D-Q) = o*+(Q-u)* (2.8)
EiD-Q| = 6Q+(1-48)E[Y]
E|D-Q|-4Q
= EfY] ) (2.9



Using (2.9) in (2.7), we get:

E(D-Q)|-EID~Q| 2 (1-9) (E—wﬁ‘%)?ﬂ ) Q)

8§Q + /(1 - A)E((D - Q)?] - 6Q?) (2.10)

= E\D - Q|

1A

Use (2.8) in (2.10) to get

EID-Ql £ 8Q+y/(1-6)(e*+(Q-w?-6Q%) (211)

Substitution of {2.11} in (2.6) gives (2.5). A.
Now, we construct a distribution, which achieves the bound in (2.5) by way
of the following theorem:

Theorem 2.2 For every @, there exists a distribution G* € Gwith given param-
eters for which the bound in Theorem (2.1) is tight.

Proof
To prove that the bound in (2.5) is tight we need to construct a distribution of

D, such that
_Jo wp.é
b= { Y wp. (1—6)

for some random variable Y’ and,

Q wp. o
|D“Q|={Y w.p. (1-6)

Also, the following conditions are in order:
(1) the inequality in (2.5) is satisfied as an equality, and
(2) the mean and variance of D, p and o respectively, are matched.

Condition {1} requires that
Var{Y) =10

In other words, Y’ takes values such that Y = |Y’ — Q| is a constant. Hence,

Y,x{Q+ﬁ W.p. P
Q-3 wp.l-p

From condition (2), by equating the mean and variance of D, we obtain

p o= (1-8p@Q+8)+1-p}Q -8 (2.12)

= (-0 - P+ s (.13)




Solving (2.12) and (2.13) for 3 and p, we obtain,

8= (£5-9)Vi+s
1 1
Pt ATe

where,

(0*(1 - 8) — 8u”)
(0~ Q(1—8))

It is easy to verify that ¢ in (2.14) is strictly positive. Hence, both p and 3 are
well defined. Thus, G* is given by:

¢ =

(2.14)

0 w.p. &
G'={Q+;3 w.p. (1-8)p
Q-8 wp. (1-6)(1-p)

Hence the proof. A

2.2 Optimal Order Quantity

Substituting (2.5) in (2.3) we obtain:

Q) = d@ + T 60+ T - 91t + (@ 1 - 6@ + (- Q)] (215)

Now, consider the probiem of finding the stock quantity, @* that minimizes

T9(Q). It is easy to verify that I'C" is strictly convex in Q. From the first
order conditions, it follows that:

. o2(1=8) — u%
¢ = aoh (“*"’\1(1—5“)(1-—5-&)) (2.16)

(R+i-)

If the Q* in the above expression turns out to be negative, then the value of the
order quantity, Q" is set at zero. This is because, the function to be minimized
(2.15) is convex with the constraint that Q > 0.

Here, note that {o?(1 — 6) — 26| > 0 and 1 — § — k > 0 always. Thus, the
only case in which a real value of @* will not exist is when,

where,

1-6+k<0 (2.17)
=J> m
m+d

In this situation the solution is to be interpreted as Q* = 0. Observe that
this soluticn matches with the optimal solution for the case when the complete
distribution of the demand is known.



2.3 Numerical Example

Consider a demand D with the following distribution with support on S :=
{0,1,2,...,8}:

) 02 fori=0
P(D“")"{o.l for 1 <i<&

The mark-up m and discount d are 1 and 0.5, respectively. The optimal solution
from (2.4) of this problem is given by @ = 5 and the profit at this Q is 2¢ for any
unit cost of purchase, c.

For the above distribution of demand, the mean, u = 3.6, the variance, 02 =
7.44 and 6 = 0.2. Under Scarf’s rule, where only x4 and o are used @, = 4 and
the profit at @, is 1.9¢ which is 5% less than the optimal, whereas under our rule,
utilizing the § we obtain @* = 5 and the actual profit as 2¢ which is also the
optimal solution.

Now, had only u, o and 4§ been known and not the underlying distribution,
under Scarf’s rule the lower bound on profit would have been 1.69¢ at Q, = 4
whereas according to our rule, the lower bound on profit is 1.8¢ at Q* = 5.

3 Application to an M/G/1 Queue with Server
Vacations

The analysis in the foregoing sections is more relevant in the context of inven-
tory control models {where the newsboy problem appears indirectly) than in the
context of the direct newsboy problem itself. In the newsboy problem, often it
is not easy to guess the probability that the demand is zero, and even if an edu-
cated guess is possible, since the mean is much larger than zero in general, this
probability will not affect the Scarf’s ordering rule substantially. In contrast, in
some inventory control problems of manufacturing systems, the relevant proba-
bility can be easily computed and can be used to get tight bounds on system wide
costs. We cite an example here.

Constder the case of multi-item production-inventory systems, where the prob-
lem is to find optimal base-stock levels for a given production sequence of items.
Many a time, it is only possible to derive moments of demand over lead time.
With the knowledge of moments, distribution free procedures can be applied to
find approximate base stock levels for items. For further details, refer [2] . Since
in such multi-item systems, the base model is an M/G/1 queue with server va-
cations, for illustration purposes, we describe here a simple production-inventory
system which can be modeled as a queue with server vacations.

Consider a production system where demand for a unit of the item comes
according to a Poisson process with rate A. Items are maintained in an inventory
up to a base-stock level R. Assume that production times for individual units of
item are 1.4.d with cdf S(.) and mean p. Let, p:= f < 1. If a demand cannot be
met from the inventory, it is backlogged. The following costs are incurred:



o C;: the backlogging cost per unit per item

e Cj: the inventory carrying cost per unit per item

Once the production is initiated, the facility continues its production until the
inventory level reaches the base-stock level R, (ezhaustive service), and then gets
engaged on some other production activity which lasts for a random duration
(hereafter, referred to as vacation period). Assume that the vacation pericd has
finite mean and variance. If one assumes that (§—1, S) replenishment for requests
come from the inventory, then the dynamics of the system can be modeled as
M/G/1 queue with server vacations. If the facility returns after vacation for
production and finds no requests in the order queue, then it goes for another
vacation. Given the above cost structure, there is a trade off between excessive
inventories and large backorders. Assuming stability, the long-run average cost
incurred is given by:

TC = CE(L-R*+CE(R-L)Y (3.1)
where L is the steady state shortfall, defined as
| L = R—1I

where, [ is the steady state inventory level. A problem of interest is to find
the optimal base-stock level R* which minimizes (3.1). Qbserve that (3.1} has a
structure similar to the newsboy problem with L as the demand distribution. In
order to compute R*, the complete knowledge of the distribution of L is required.
It is not easy to find the complete distribution of L. However, it is possible to
determine the mean and variance, u11, 07 respectively, of L, and the steady state
probability that [ is zero &r.

Define cycle time, C, as the time from the end of a service session (before the
vacation starts) to the end of another service session. Using regenerative process
arguments, the cycle time can be written as:

C = time until the first arrival + the remaining vacation period + the length
of a busy period. ‘

The steady state expected values of the above terms are related by:

1
A

where, V, is the (equilibrium) excess distribution of V, and its expected value is
given by,

E[C] = 1 + EIV.j + E|B] (3:2)

_ BV
BVl = 22w
Also, from the stability condition, it follows that,
E[B| = pE(C) (3.3)
5, = 1
LT AE[C]
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Hence,

oL (3.4)

__1-»p
One can use (3.4) to compute bound on (3.1) using (2.5) and the worst case
optimal base stock level B* using the analysis of the previous section.

Remark:

Note that for reasonable values of p, say ranging from 0.3 to 0.6, the optimal
shortfall from (2.16) can sharply deviate from the optimal value derived from
the Scarf’s rule. Also, interestingly, in any multi-class queueing system, system
utilization for each individual class will in general lie in the range mentioned above
and hence, the value of § will drastically affect the lower bound on objective value.

4 Conclusion

In this paper, we have discussed a variant of the distribution free newsboy prob-
lem with an additional knowledge on the probability of demand assuming the
value zero. A lower bound on the objective and the distribution which achieves
the bound have been presented. The bound presented here can be used in many
inventory control problems where newsboy problem is embedded. For example,
in a multi-item production-inventory system, a problem of interest could be de-
termining periodic sequence for production under base-stock policies. Based on
the above bounds, it is possible to perform approximate analysis and arrive at a
near-optimal sequence. Further, for such systems, the above bounds can also aid
in evaluating various static policies with regard to their worst case performance.
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