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Abstract 

III this article we explore the testing of non-inferiority and equivaknce hypotheses 

arising from multiple centers when the assumption of norrnalit,)i is violated, In a multi­

center st udy, the trials arc typically conducted at differenL centers which vary in terlllS 

of locat.ion, environment., demographics among ot.hers, leading to substallt.ial amount of 

heterogeneity in the patient populat.ion. This unexplained variation in a lIlulti-center 

clinical study is usually modeled using a random effects model, where the centers are 

assumed to be a random sample from the population of centers, Most research in this 

direction uses a parametric normal distribution which can be restrictive and may lead 

to biased result if the actual distribution is nonnormal. In this article. we overcome this 

parametric assumption by considering a broader class of r'andom effects distribution 

for the centers. In particular, we develop a novel nested Dirichlet process (nDP) model 

to f'xplore thf' sensitivity of t he fixed treatment effects under various hypotheses, in 

the presence of nonnormality, Additional advantage of our proposed method is that 

it facilitates a hierarchical clustering structure. At one hand it clusters the centers 

according to their effects, and hence outlying centers can be identified. Simultaneously, 

subjects from the clustered centers are again clustered together enabling a borrowing 

of information across similar centers. Further, we present the methodology to test 

betwPf'n the models with nDP verslls a normal random center effects models. We 

discllss the results of our propm;ed methodology in a real example of a multi-center 

clinical trial on Scleroderma lung study. The results of the analysis along with t.he 

extensive simulation study show the advantage of our method when the center effects 

distribution is not normaL 

Keywords: treatment effect; nested Dirichlet process; multi-center; Scleroderma lung 

study; 
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1 Introduction 

l\ common goal in clinical trial is to compare several treatments conducted quite often at dif­

ferent centers. Geucrall~·. multi-center trials arc designed with the objcctive of dClllonstrMing 

<'In overall treatmellt effect from t.he combined coutrihut ions of a II ccut ers. 1\ I Illti-«(,llt Cl t lia Is 

are thus very commOll in t he field of drug d('velopnlC'nt. The I eH E~) (1998) gllidaJl«(' outlines 

two maiu reasou for the popularity of multi-center trials. First, it helps to enroll required 

llllmiJer of patients in a time bound fashion. Second. multi-center trials provide a better ba.sis 

for the generalization of the findings as it represent.s a broader class of pat.ient populatiulls. 

As noted by Freeman (1998) multi-center trials consist of many sources of variability dllc to 

various factors, viz, location, environment, demographics, etc. Due to this heterogeneity in 

IIlulti-center trials there are two major sources of variation in treatment response that can 

be accounted for (Anello et al., 2005): the variation within and between centers. To account 

for these variability several researchers assumed a random center effects model to capture 

the heterogeneity inherent among different centers. Traditionally, a parametric normal dis­

tribution are assumed for these random center effects. Since the particular distributions 

of these latent effect. measnres can have an impact on conclusions of the t.rial, rout.ine Ilse 

of normal distribution would be rather a strong assumption (Higgins et al., 2009). In this 

article, we review and illustrate the danger of using a normal distribution in the abscnce of 

proper just.ificat.ion. To prot.ect the model from dist.riout.ional misspccificat.iom;, we develop 

a hroadp.r class of A0xihlf' nonparanwtric dist.rihl1tiol1 IIsing HIP rp('cnt.ly dpVf'loped !lest eel 

Dirichlet Process (nDP; Rodriguez et al., 2008). 

There has been a wide amount of literature of th0 mixed model approach to multi-center 

clinical t.rials wit.h fixed t.reatment. effects and random cent.er effects. Sec Pat.el (2002) for 

a review. Some other work in a similar direction arc in Khatri and Patel (1992), R.ashid 

(2003), Thompson (1994) and Gould (2005). Most of t.he existing methods assumes a normal 

distribution. While this rather strong assumption makes the model easy to apply in widely 

useo soft.wares such as SAS, the accnracy of t.his assumptions is oifficult to ('heck and t.he 

routine usc of normality in mixed model is routinely questioned by many authors (R.ashid, 

2003; Ohlsscn ct al. , 2007; Branscum et al., 2008; Higgins et aI., 2009). Normalityassllmp-
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tioll is too restrictive as it suffers from the lack of robustness particularly whell the dfccb 

across cellters show multi-modality and/or skewlless, and thus Illay not provide an accurate 

estimation of betv,;een-center variation. Furthermore, inference on individual cent.er dlects 

can \)(' misleading when the random cent.er effects distribution deviates from normality. The 

ICII E0 address('s th(' issu(' and possihh: effects of having outliers in multi-center trials. Thus, 

it is of prRctical interest. to develop statistical model with considerable flexibility in t.he dis­

tribn! iunal assumptions of t.he random effects as well as measurement error. Rashid (2003) 

developed a rank-based procedure for testing a non-inferiority and equivalence hypothesis for 

Illult.i-center trials using mixed model. The R estimates arc obtained by minimizing a sum 

of Jackel (1972) type dispersion functions based on intra-center ranks of residuals. However, 

this method has too much reliance on the central limit theorem and thus may not be realistic 

when there are fewer studies. Recently Lee and Thompson (2007) used a skewed distribution 

to reduce the effects of outlying centers, and a mixture distribution have been advocated to 

accollut for studies belonging to unknown groupings (Bohning, 2000). Although the use of 

a heavier-tailed distribution such as t-distribution provides some robustness, it may not be 

sufficient to represent the actual distribution of effects. For example, even a heavy-tailed 

distribution, such as the t, has a unimodal and a symmetric shape and restrictive in the 

sense that it fails to allow multi-modality, which may arise due to latent sub-populations. 

Baycsiau sCllliparalllctric approach offers a useful altenmtive ill this direction. There have 

been few work (Burr et aI., 2003; Burr and Doss, 2005; Ohlssen, et aI., 20(7) OIl using a 

Dirichlet process (DP) prior in a multi-center clinical trials. A Dirichlet process consists 

of a control parameter and a baseline distribution which can be normal. A discrete lIlass 

points are drawn from this baseline distribution and how close the discrete distribution is to 

the baseline depends on the value of the control parameter. Thus the fitted random effects 

distribution using DP is flexible enough and has the potential to be robust to departures 

from a normal distribution while having good performance if the actual distribution is nor­

mal. Rccently, Branscum ct al. (2007) developed a Polya tree method in a meta-analytic 

framework. 

We consider a broader class of random effects distribution for the centers. In particular, 

we develop a novel nested Dirichlet process (nDP) model to explore the sensitivity of the 
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fixed trcatlllcllt d!'cc\s ullder various hypotheses. iu t hl' prcsellce of IlOIl-llOllllCllity. Addi­

tional advltutage of Olll proposed lIlethod is that it allO\vs a hierarchical clustering stlllcturC. 

whereby the centers clusters according to similarity of their effects. and hence outlying cen­

ters can be identified, and at the SMile time subjects from the clustered ['euters ,1[(' also 

cluster borrowing information from similar centers. Further, we present the methodology 

to test nDP model versus a normal random center effects model. As mentioned. although 

semiparametric Bayesian models have been previously used in multi-center clinical trial data. 

t.o our kllowlcdge this is the first systeIllatic attempt to use the nDP for this kind of mixed 

model. 

1.1 Motivating Data: Scleroderma Lung study 

Our method is primarily motivated by the Scleroderma lung study (Tashkin et aI., 2006), 

which is a double blinded, randomized clinical trial. The aim of the trial was to evaluate 

effectiveness of oral cyclophosphamide (CYC) versus placebo in the treatment of lung disease 

due to scleroderma. Scleroderma is an autoimmune connective-tissue disorder that is charac­

terized by Illicrova;;cular injury, excessive fibrosis of the skin, and distinctive visceral cbanges 

that can involve the lungs. heart.. kidneys, and gastrointestinal tract. A number of agents 

have been evaluated as treatments for scleroderma-related interstitial lung disease, but none 

have been proven effective. Only CYC has shown promise in slowing down the decrease or 

even improve the forced vital capacity (FVC) over time. In this study our primary outcome 

is forced vital capacity (FVC), as percentage predicted) determined a 3-month intervals from 

baseline. At 13 clinical centers throughout the United States, the study enrolled 158 patients 

with scleroderma, restrictive lung physiology, dyspnea, and evidence of inflammatory inter­

st.it.ial lung disca..<;e on examination of hronchoalveolar-lavage fluid, thoracic high resolution 

computed tomography, or both. Patients received oral CYC (:S: 2 mg per kilogram of body 

weight per day) or matching placebo for one year and were followed for an additional one 

year. Pulmonary function was assessed in every three months. 

We are interested in evaluating whether oral CYC can either improve %FVC scores. 

The study enrolled 158 patients with scleroderma-related interstitial lung diseas(" who were 

randomized to receive either CYC (2mg / kg) or identical-appearing placebo for 18 months. 
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Sinle til(' st.udy was cOllducted across 13 centers, it i;; illlportant to dsse.')S the trcatment died 

"dlen adjusted for the random center effects. Thus, in this pa.per we develop a model to test 

the effectiveness of the treatment eye over placebo and a,ssmtit' a nOP for the random 

center effects. One of the scientific interest is to find the centers whose patients population::; 

behave similarly. Out of the 153 patients, 145 completed at least six months of treatment 

and were included in the analysis. 

The rest of the paper is organized as follows. In Section 2, we present the basic model, 

llorlllal randolll center effects, the nOP preliminaries and state the hypothesis of interest. 

Spction J. ~ivl's the nOP llI()dt~1 a.<; a generalization of thl' ba.<;ic random effects 111 or\ PI , and 

Sec tion 4 ?;ives the posterior distributions of the parameters. Section 4 describes the siltlu­

lation study and Section 5 described the analysis of the data {'rom ScleroderIlla Lung Study. 

Section 6 have the discussion. 

2 Background 

2.1 Basic Model 

In the following we describe the basic model with the existing normality assumption to put 

our new model in perspective. Let Y,)I be the response of the i-th subject from j-th center 

under t-tll treatment; i = (1,2",' ,n)), j = (1,2"" ,C), t = (1,2"" ,T). Rashid et 

a1. (2003) assume the following normal random center effects model (without covariate) for 

multi-center clinical trials: 

(1) 

where f)t is the fixed t-th treatment effect, flj is the j-th center effect, 'Y = (1'1,"" I'r) T 

is a T x 1 dimensional vector of coefficients associated with 'f' x 1 dimensional vector of 

covariates Wi} = (Wi) 1, WiJ2; .. ' , W;J1') T and eijl are the random measurement errors. The 

basic a::;sumptious iu (1) is that the random ('cuter effects and t he errOl'S are iudcpcudent, 

and are both normally distributed with zero means. 

Although in'model (1), the basic assumption of the random center effects is Gaussian, 

as we discussed this assumption is questionable and inference can be biased under possible 
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lIlisspccihcatioll of this IlOllllality asslllllpt.iOJl. Thus, t llC prol)lcItl we address ill this ellt ide 

is to broaden the class of distribution of the ralldom center efleets. In particular, we assume 

that the center effects corne from some ullspecified distributions. This allows more flexibility 

and robustness in the modeling of the obser\"ations from different centers whell t he\" do 

Hot secllI to have come from a comlllon distribution, but lllay have come from a rnix(lIlc 

of normal distributions, a distribution with hcavier tails, or from some other distributions 

which cannot be easily specified. Use of nDP is a robust generalization as it has the potential 

to capture these departures from a normal distribution while having good performance if the 

actual distribution is normal. 

Based on the above model (1) an important question is to assess the efficacy of the 

treatment effect by pooling the dat.a across the cent.ers. There are some comments in this 

regard in the ICH E9 guidance (1999) which is described in detail and Annello et al. (2005). 

Based on t.hese documents, t.here arc two main categories of hvpothescs in assessing tl"l'atmcnt 

efficacy: one is t.esting equivalence between treatments. where the null hypothesis is that. the 

difference between the active comparator and new drug is within a pre-specified limit.; ",hile 

the other one is testing for non-inferiority where the aim is to show that the new drug is not 

less effective than the control by more than a defined margin. 

Although not exhaustive, we list the following three potential hypotheses: 

a) Ho: BI = B2 = ' . , = BT = 0 =? Equality 

This is a. general hypothesis in multi-center trials. Accepting Ho in this hypothesis 

implies that there is no significant. treatment effect in the study and t'1us t.reatments 

are not heterogeneous. 

b) Hot : -~ < Bt - Bt, < ~ =? Equivalence 

This hypothesis assesses the equivalence of any two treatment (including placebo) 

within a given range. 

c) Hot: Bt :S Bt +1 - ~o =? Non-inferiority 

Accepting this hypothesis demonstrates a Ilew treatment is not worse than an active 

control hy more than a specified margin. 

7 



2.2 The nested Dirichlet process 

Sincc Fcrf',usoll (1973) described thc Dirichlet proC('SS (D P) as a randolll probability measure 

that can be viewed as a distribution 011 distributions, usc of DP has become popular in the 

literature of 110nparametric Bayes estimation (sec, for example, Antoniak 1974: Lo 1978, 

1984: Escobar 1988, 1994; Escobar and West 1995, Ghosh et aI., 2009). Let DP(oH) denote a 

DP wit.h base measure H and precision 0 > O. Replacing H by another OP, Rodriguez (2007) 

and Rodriguez et al. (200S) introduced the nested Dirichlet process (nDP), which, frum a 

similar perspective, can be characterized as a distribution on the space of distributions on 

distr·ibutions. The nOP provides a framework to model collections of dependent distributions 

utilizing clustering features of the DP. A collection {Fj, j = 1, ... , C} of distributions on any 

compkt,c and separabk metric space 8 such t.hat Fj '" Q with Q == DP(nDP(pfl)), for n. p > 0 

and H being a probability measure on 8, is said to follow a nO P. Write {FI ,··· , Fe} '" 

nDP( ct, p. H). The stick-breaking characterization of the OP (Scthuramall 1994: Sethuraman 

and Tiwari 1982) implies that 

Fje) '" Q == L 7rkOF;() (2) 
k=1 

and 

F;(·) == LWlk6iJiJ), (3) 
1=1 

L f3* iid H Wllere IA: '" , 
1·1 

wik = u~k II (1 - U:k), U~k '" beta(1, p) 
8=1 

and 
k-l 

7rk = 'Uk II (1 - 'U;), 'Uk '" beta(1, 0), 
8=1 

with beta( a, b) representing a beta probability distribution with parameters a and b on 

the (0, 1) interval. The nDP naturally induces clustering in the space of distributions as a 

consequence of the almost surely discreteness feature of Q, illm;trated by (2). Specifically, 

there is a non-zero probability IP'( Fj = Fj' I H) = 1/( 1 + 0) that two distributions Fj and 

Fi' fullow the sm:ne random distribution F; defined by (3). Furthermore, the nOP enables 

clustering between samples from the distributions in the collection. That is, samples from 
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one single F j . or from F] and FI,. j #- j', are correlated, and possibly identical. As F,' 

is almost surely discrete as defined in (3), samples f3'j and ,8,,] from F} Illav be identical 

to some /3tk if Fj = F;', while the correlation is given by corr({j,), B,,}) = 1/( 1 -/ p). In 

analogy, respective samples (Jij and 13" J I from two different distributions F, and FI " j i- j'. 

may be identical to some ,fltk if FI = Fj' = F;, while the correlation call be shown to 

he corrU3,), B,I}I) = 1/[(1 + 0)(1 + p)], which is always less than the correlatioIl 1/(1 t p) 

uet.weell two samples from the same Fl' See more discussion on nDP in Hodrfguez (2007) 

and Rodriguez ct aL (200S). 

3 nDP Model and Methods 

Here we generalize the model as described in (1) with covariates and usc nD P to better 

model the heterogeneity aIllong centers. We assume that 

(4) 

where f3ij denotes the effect of the i-th subject at the j-th center, thus allowing for a nested 

subject effect, and eijt ~ N(O, T- 1). Generalizing the normality assumption for the center 

effects in (1), we assume that 

( { F J , ... ,F c} 10', p. H) 

, ..... 

j = 1, ... ,C, i = 1, ... ,njl 

nDP(Q, p. H). 2 with If = N(O, 0'3)' 

This formula.tion for the ('cnter effects has the following interpretations: 

(5) 

(6) 

(i) (Heterosceda.<;ticity) Different. subject.s i in different. centers j may be influenced by 

different center effects. 

(ii) (Exchangeability) For different subject i in the same center j, the center effects f3ij are 

independent and identically distributed for all treatments t = 1, ... , T. 

(iii) Centers are clustered according to their effects on the response, and hence, outlying 

centers can be identified. 
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(iv) Silllllitallcously, subjects frolll similar centers arc clustered togetlter according to tlte 

effects attributed by centers. That is, being clustered toget her this allows borrmving 

irliotlllation across centers that arc similar. 

We assumed standard choices for the prior distributions. Hence, gIven the covariates 

arc assumed to satisfy the following hierarchical model hereafter referred to as the nDP model. 

(Yijtl e/l (Ji]", T) 

et. 

(!1;] IF]) 

({Fl ,··· ,FC}lo,p,H) 

ind T 1 N(et+(J;j+W;j"T-), j=1, ... ,C,i=l, ... ,'n}1 

iid 
N(O,a~), t=l, ... ,T, 

iid 
i =: 1, ... 1 'nj 

nDP(o:, p, H) wit:h H = N(O, a~), 

p gamma(ap , bp ), 

, MNr(O, l:,), 

(7) 

where ao, a(l, ao:, bo: 1 ap , bP1 an br are fixed positive constants, and l:, is a known r x r variance­

covariance matrix MNr(O, l:,) represents an r-variate normal distribution with zero mean 

vector and covariance matrix l:" and gamma( a, b) denotes a gamma distribution with shape 

parameter a and scale parameter b 8,'1Ch that its mean is a/b. 

As a consequence of the unique characterization of a OP in terms of the P6lya urn 

distribution of Blackwell and Macqueen (1983) the posterior distribution of the above nOP 

model can be represent.eo in the form of a hierarchy of t.wo layers, in which there is a Polya 

urn distribution in each layer and the P61ya urn distribution at the top layer depends on that 

at the bottom layer. Though there exist explicit expressions for the two P6lya urns, handling 

of two such nested Pulya urns turns out to be quite cumbersome due to their complicated 

dependence structur<', resulting in extreme difficulties implementing the P6lya urn Gibbs 

sampler in Escobar (1988, 1994), which is one of the most popular Markov chain Monte 

Carlo method for sampling from the posteriors in nonparametrie models involving OP, for 

computations of posterior quantities in this model. For the explicit. expressions of the P6lya 

urns for a nOP, one may refer to Rodriguez (2007). 
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4 Posteriors 

Following Rodriguez (2007) and Rodriguez et al. (2008). we replace the stick-breaking rep­

resentations of the DP priors for both F} and F/ given in (2) and (3) by their almost sure 

truncation approximations which are finite sums of K and L clements, respectively. That is, 

K 

F}(-) :::::; L 'TIZ5f~:()' 
k=1 

where 'TIk = vk Il:'::; (1 - v;) with uk rv beta(l, a), for k: = 1, ... ,K - 1, and v'K 

for k: = 1. .... K, 
L 

F~(·):::::; LW;k56iJ), 
1=1 

(8) 

Land. 

(9) 

where 8tk ~ fl, w;k: = uik Il~-==II (1 - U;,J with uik rv beta(l. p), for I = 1, ... , L - 1, and 

(!3~1" .. ,!3il" ... !3iK"" ,!3iK)' 
The finite dimensionalities of (8) and (9) allow us to express the Bayesian semipararndric 

model (7) entirely in terms of a finit.e number of random variables. Because of t.he nature 

of their prior distributions, these random variables can be drawn from some standard multi­

variate distributions. We assign them into the following four groups or blocks of pammeters, 

namely, ((',~, rr*,w*,{3*. a,p)", T, and (e l , ... ,eT ), where (' and ~ arc two vect.ors of clas-

sification variables describing clustering behavior of t.he cent.er effects defined as follows. Let 

(' = ((1, ... , (c) denot.e a classification vector descrihing the center effects by set.ting (j = k, 

for k = 1, ... , K, if and only if the center effect f?r the j-th center, for j = 1, ... , C, !3ij 

is distributed as Fj = F;. Furthermore, define classification variables ~ij, for j = 1, ... , C 

and i = 1, ... , nj, and set ~ij = I, for I = 1, ... , L, if and only if the center effect. for the 

observation Yijt is given by !3i,) = Bt()· As shown below, the knowledge of these two vectors 

of classification variables provide an equivalent expression of the likelihood of the observed 

data. According to model (7), the likelihood of the observed response Y,jt = YiJt from the 

i-th subject, rec9iving t-th treatment in j-th center, which is associatC'd with a covariate 

vector Wij, is denoted by 

(10) 
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It can be equivalently expressed as 

n1j,]ti8I,;3; ; ,,,,(.T,W'7) = (TcXP [-=(YiJI-et -;3; (-W,T
J
",()2]. (11) 

. '. "'I'" . V 2; 2 "'I' I '. 

Generalizing the idea of the blocked Gibbs algorithm of Ishwaran and James (2001), based 

on this equivalence relation of the likelihood, an iterative algorithm (discussed in Appendix) 

cycling through four steps, in which each step draws one of the four desirable blocks of 

parameters conditioning on all the other variables, can be derived for sampling random 

variates of the four blocks of parameters from their joint posterior distribution for evaluating 

posterior estimates of any quantity of interest in the problem. 

Implementation of the iterative algorithm for M, some large number, cycles results in a 

l\larkov chain of realizations of the four blocks of parameters. Suppose that a Markov se­

quence (e\I), ... , e¥\ ... , (eiM), ... ,e~M») is generated for the treatllleut effects (e l , ... , e-r). 

The pORt-erior probabilities for different hypotheses about any relationship between the treat­

ments, equality, equivalence, or non-inferiority, can be approximated by sample probabilities 

of the events of interest obtained from the posterior samples. For instance, the probabil­

ity of equivalence of any two treatment IP'( -6 < Ot - Ot' < 6), for some small 6 > 0, is 

approximated by 

and the probability of non-illferiority of the t'-th treatment effect et' to the t-th treatment 

effect Ot, denoted by IP'(Ot ::; Oi' - 6), is approxilllated by 

For purpose of investigation of accuracy in the estimation or drawing prediction of any 

new observation, one can make use of density estimates of any observation Y associated with 

t-th treatment in the j-th center and covariate vector w, that are in' general computed as 

(12) 

where f?) is defined as in (10) according to posterior samples of the unknown parameters in 

the k-th iteration, denoted by eik
), ;3g), ",(k), and T(k), for subjects associated with the t-th 
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treatment from the same center j. In particular, for the nOP model, suppose that ill the 

!.--iteration. {~;U).(;) }(k) denotes the posterior draw of the center effect ,13,} for the i-til ob-
""'i ,I..." 

s('rvation in the j-th cellter acconlill" to da~~ihcat.i()ll vClria])lt':'; ~(k) and {,(I.) ill the sallle 
b .... ,} "I 

where I{A,(,.J)} is an indicator function for the event that the i-th observation in j-th center 

is associated with t-th treatment, and Nj(t) == L~~l I{At(i.])} 'S TtJ is the total Humber of 

observations associated with t-th treatment among all nj observations in j-th center. For 

the normal model, ,13~) for all i = 1, ... , TI} are identical, say, denoted by ,BY), then ft{k) (ylw) 

equals 

_l_JT(k)~ex {_T(k
J

(, _e(k)_f.l(k}_wT (kJ)2}I ' 
Nj(t) 27f f:: p 2 Y t I-'J , {Ad1.))}, 

which reduces to f(ylei k
), ~Y), ,(k), T(k), w) as the summand is constant for any i and the 

total number of summands equals Nj (t). 

4.1 Model Comparison 

To our knowledge, the random effects model (7) is the only direct generalization of the 

normal/Gaussian model considered in the literature, defined as in (1), using nOP. Thus, 

it is important to formally test the Iltility of nOP over simple normal model. However, 

developing a formal Bayes factor for this purpose can be to"gh as in general, it is difficult to 

compute a Bayes factor in any Bayesian nonparametric mixture model involving OP since 

exact evaluation of the marginal likelihood/density of the observations requires performing 

a multi-fold integration with respect to the Polya urn distribution or calculation of a finite 

sum with total number of summands roughly of magnitude of the Bell's number. Basu and 

Chib (2003) proposed a non-iterative algorithm based on the collapsed sequential importance 

sampler developed in MacEachern et al. (1999), which is also discussed in the context of 

weighted Chinese restaurant processes by Lo et al. (1996), to approximate the latter sum. 

See also Hayakawa et al. (2002) who applied the same algorithm to evaluate a Bayes factor 

in ~ayesian mixture hazard models involving gamma and weighted gamma processes. To 
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the best of our knowledge, no one has proposed any iterative algorithm for these proposes. 

Furthel'lnOl'c, since an extension of sHch an non-iterative algorithm for posterior infercllce 

of models involving nDP is not available yet, it is practically impossible to approximatc the 

marginal likelihood of the nDP model (7), and thus, in turn, to evaluate a Bayes factor in 

the model. 

However, the Bayes factor has several other potential problems (Gelfand and Dey, 1994), 

t.he most. significant being numerical instability. Therefore we consider an alternative predic­

tive measure of model performance, introduced by Geisser and Eddy (1979) as a predictive 

critC'I'ion termed the log pseudo marginal likelihood (LPl\'lL). LPJ\1L has been used exten­

sively ill problems of Bayesian model selection (sec, for example, ChCll et a!. 2000, Chapter 

10; Drown and Ibrahim 2003, Ghosh et a!. 20(9) as a useful sUlIlmary statistic for comparing 

tumlel hts. Model:,; with greater LPML value:,; represellt a better fit. The LPML is dcfillcd 

based on estimates of the conditional predictive ordinate (CPO; Gelfand et 301. 1992; Chen 

et 301. 2(00) for all observations 

C nj 

LPML = LLlog (CPO;j) , (13) 
j=1 ;=1 

where 
___ [ M ]-1 
CPO,] = ~1 L f(ydfJ(k) rlk)~ ,(k). T(k). w ) 

k= 1 tJ t , t.)· . . tJ 

with f defined ill (10), i:,; the estimate of the CPO for the i-th observation from j-th center. 

Specifically, for the nDP model, 

___ nDP 

CPO;j 

___ nDP (k) 
For the normal model, it takes the same form as CPO;j with {,B*(k) (k) }(k) replaced by,Bj . 

E,,) ,() . 
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5 Simulation Study 

III this sectioll. we present Ilumerical examples designed to demonstrate the abilitv of the 

nDP model in providing accurate estimates for all of the fixed treatment effects, the random 

center effects, and the covariate effects. Simulation results based on the nDP model cUe 

obtained by implementing the introduced iterati VC' algori thrn with truIlcation levels in (8) 

and (9) set as K = 35 and L = 55, respectivciy. Posterior estimates of parameters and 

other quantities of interest are computed based on AI = 10,000 samples taken from the 

lVlarkov chain once every 5 iterations after discarding 50000 burn-in samples. Hyperprior 

parameters in (7) are set as follows unless otherwise stated: To deflate thf' priors, Wf' Sf't 

(J8 = (J!j = (J-y = 100, and aT = bT = 0.001. Furthermore, we set ao: = bo: = (Jp = bp = 3, 

implying that E(a) = E(p) = 1, which is a common choice in the literature, and P(c, > 

3) = P(p > 3) ~ 0.006. 

5.1 Simulated Data 

Six different !jets of simulated data are generated according to (4) ba!-:ied 011 t.he following 

set-up. There arc T = 2 different treatments with known effects 81 = -82 , 4 different centers 

with random effects f3ij distributed according to different mixtures of known distributions, 

and the error term eijt follows a normal, or a Student's t distribution, or their mixtures. 

Except the last dataset, the number of independent observations from each center is given 

by nj = 50, and hence, the sample sizes of all datasets are 200. For purpose of comparison, 

these datasets are also analyzed by the normal random center effects model, which differs 

from (7) with f3ij replaced by f3j, for i = 1, ... , nj, and F j = 1I = N(O, (J~). This alternative 

model is referred here as the normal model. 

In the first dataset, 81 = -02 = 0.5, there arc no covariates, and both f3ij and eijt follow 

mixtures of normals, where 

f3il 0.6N(0,22) + OAN(3,1), i = 1, ... , nl, 

f3i2 0.5N(0, 22) + 0.5N(3,1), i = 1, .... TL2, 
(14) 

f3i3 0.8N(5,1) + 0.2N(10, 1), i = 1, ... , Tt3, 

fJi4 0.8N(5,1) + 0.18N(10,1) + 0.02N(-1,2), i = 1, ... ,n4, 
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with all TlJ = 50, and e,Jt '" 0.3N( -2,1) + O.4N(O, 1) + 0.3N(2, 1). 

First. the posterior probability of equivalence of the two treatments, that is, el = e2 , is 

approximated by the nOP model as 

0.0005, 6. = 0.01, 

0.0039, 6. = 0.05, 

providing strong evidence that the two treatments arc not equivalent, where eil), ... ,eiM
) 

are posterior draws of the treatment effect Bl generated by the iterative algorithm. Second, 

the non-inferiority of el to O2 is justified by the posterior probability, approximated by 

1 0.9906, 6. =' 0.01, M { : 

M {; I{""<2(1~kJ} = 0.9886, 6. ~ 0.05. 

These posterior probabilities arc comparable with their corresponding probabilities approx­

imated by the normal model, which arc not reported here. In short, the nOP model seems 

to be working fine in estimating the treatment effects in this scenario when the errors have 

a mixture of normal distribution. 

Based on the second and the third simulated datasets, we aim at providing an in-depth 

study of the performancc of the nOP model and at demonstrating the superiority of the 

nOP model over the normal model when dealing with data involving probably some extreme 

values. In these Lwo datasets, the treatment effect Bl remains as 0.5, there are again no 

covariates, and Hij arc distributed as in the first dataset except with zero standard deviations 

in all the components of the mixtuTe distributions defined in (14) (that is, for instance, i3il is 

distributed as a two-point mixture at 0 and 3 with respective weights 0.6 and 0.4). The error 

distributions in the two datasets from which eij are generated arc chosen to be the Student t 

distributions with 5 degrees of freedom and 1 degree of freedom, respectively, which possess 

thickcr tails than the mixture of normals in the case of the previous dataset. Estimates 

of posterior probability of equivalence of the two treatments by both methodologies, not 

reported here, arc all close to zero. Table 1 summarizes the posterior probability estimates of 

the non-inferiority of Bl to B2 , for some 6. > 0, from the two methodologies. The probability 

estimates, produced by the proposed nOP model for the center effects distributions, roughly 

equal to 99% in all cases and, arc always larger than those produced by the normal model. 
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1\lorco\'cr, it secms that the normal modcl fails to providc as strong evidcnce as the IlDP 

modcl in supporting thc non-infcriority of 81 to 82 , as thc resulting probability estimates 

arc only;:::;; 86% when the elTor distribution is a thick-tailed Canchy distribution (i.e., for 

the third dataset). Figure 1 displays boxplots of postcrior samplcs of 81 from which the 

reported probability estimates arc ('omputcd. \Vhcn the elTor distributioIl is the Student 

t distribution with 5 degrces of freedom (in thc upper graph of Fig,ure 1). thc median of 

the postcrior samples from thc nDP model (given by 0.447) is closcr to the truc valuc of 

81 = 0.5, comparcd with the mcdian bascd on thc normal model (given by 0.358). Based 

on thc third datasct ( with Cauchy crror) , the lowcr graph of Figure 1 dcpicts that thc 

median of thc postcrior samplcs from thc nDP model is 0.794, which is closc to the true 

value 0.5, and the range of the samples is comparable to those in the upper plot taking into 

account that the Cauchy distribution has a thickcr tail than thc Studcnt t distribution with 

dcgrces of freedom grcatcr than 1. On the contrary, corresponding posterior samplcs froIll 

the normal model are totally non-sensible, with median as 1.659 and a much larger range 

than all the other cases in the same figure. In summary, the flexible nDP model seems to 

be more powerful in estimating the treatment effects than the: normal mo(kl when the: elat.a 

are generated from distributions with thicker tails than normal. 

[Table 1 about here.] 

[Figure 1 about hcre.] 

The superiority of the nDP model over the normal model can be further demoTl'.;trated 

in Figures 2 and 3 constructed based on the second dataset (with ~rior distributed as the 

Student t distribution with 5 dcgrees of freedom). Figure 2 depicts empirical distributions 

of posterior samples of both T anel the: cente:r e:ffects (Jij from the two methodologie:s, of 

which the latter graphs of {3ij provide estimates of the center effects distributions F}. The 

top two graphs of Figure 2 show that posterior estimates of T from the nDP model arc more 

likely to takc larger values closer to 1, compared with those from the normal model that 

cluster between 0.1 and 0.3. We argue that the magnitude of T can serve as an indicator of 

accuracy in estimation of the treatment effects, as variances of the full conditionals of 81 or 

Bs , displayed in (17) or (16) in Appendix, are roughly inversely proportional to T through Bl 
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or Bs. That is, 0, or Hs is less variable when T is large. Furthermore. histograms for the 4 

center effects are much closer to the true center effects distributions from the nDP model (left 

column) compared with those from the normal model (right column). For instance, the lower 

two graphs at the left column clearly show two modes at G and 10. respectivriy. 

[Figure 2 about here.] 

Figure 3 shows density estimates of any observation associated with the two treat­

ments (left to right) in the four centers (top to bottom) based on the second dataset, wherein 

solid and dashed lines represent estimates froin the nDP and the normal models, respectively, 

and histograms of the simulated data arc displayed in the r'espective settings according to 

treatments and centers (roughly 25 observations in each histogram). All solid and dashed 

lines in the four upper plots, which display roughly unimodal-shaped histograms, arc closer 

to each other. However, in the four lower plots wherein the histograms of the data arc some­

how bimodal, all the dashed lines fail to capture either the major mode or the small mode, 

while the solid lines not only capture the small mode to the right more clearly but also em­

phasize the major mode more precisely. Hence, the nDP model, but not the normal model, 

is flexible enough in dealing with data that exhibit multimodality together with probably 

extreme observations. 

[Figure 3 about here.] 

Next, we look at the performance of the nDP model when the data depend on some 

covariates. The fourth and fifth datasets differ from the third dataset, which has a Cauchy 

error distribution, in two aspects. First, there is one covariate from which the observations 

arc generated according to (4) with coefficient 'Y = -5. The covariates Wij follow a uniform 

distribution on (-1, 1) and a normal distribution N(O, 1.52
), respectively, in the two datasets. 

Second, the center effects f3ij follow the distributions in (14). Figure 4 presents the empirical 

distributions of posterior samples of HI and 'Y based on both datasets from the two method­

ologies. Histograms of the samples from the nDP model arc displayed. Their corresponding 

density estimatQs by kernel smoothing techniques arc represented by solid lines. Dashed 

lines arc kernel density estimates based on posterior samples from the normal model. The 
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fom histograllls. prudnccci by the nOP model, arc well-centered and cOIlcC'ntrated at tile trlle 

values of B, = 0.5 and') = -5, respectively. However, kernel density estimates produced by 

the norIllalltlodel (dashed lines) either do not peak at the true values or spread over a largcr 

range than the histograms in every graph. In addition, we computed the LPI\IL for the 

two models. Values of LPML for the nDP model and the normal model arc -655.126 and 

-934.999 bascd on the fourth dataset (with uniform covariates), and -628.022 and -744.6 

based on the fifth dataset (with normal covariates), respectively. The irrefutahle conclusion 

that the nOP model outperforms the normal model can be further consolidated by the mag­

nitudes of posterior estimates of T by the two methods, of which those from the nOP model 

range from 0 to 0.4 but those from the normal model range from 0 to 0.02 only. 

[Figure 4 about here.] 

To lwUer oifferentiate the t.wo met.hoos, we tak(~ a closer look at. the simnlaJ.ion r('snlts 

based on the fifth dataset wherein the covariates are normally distributed, as results from 

the normal model shown in the right column of Figure 4 seem more comparable with those 

from the nOP model. In the top right plot there, 95% posterior interval estimates of OJ 

arc given by (0.001,0.982) for the nOP model and (-0.308,1.825) for the normal model. 

We simulated more data based on the same settings such that there arc 200, instead of 50, 

observations from each of the 4 centers, and obtained 95% posterior interval estimates of OJ 

as (0.295, 0.710) for the nOP model and (0.126,5.732) for the normal model. This shows 

that the nOP model leads to less variable estimate of 01 which is closer to the true value of 

OJ = 0.5 than the normal model, as sample sizes increase. 

Finally, we scrutinize for how the special clustering features of the nOP model benefit 

inference in this context of meta-analysis with the aid of the last simulated dataset, which 

is a variant of the second dataset. This sixth dataset is identical to the second one in 

terms of involving no covariate, and same distributions of f3ij and of the errors eij, but the 

treatment effect::; arc chosen to be slllaller as f)J = 0.05 in a way to illustrate the abilit.y of the 

methods in estimating treatment effects of negligible magnitudes compared with magnitudes 

of the center effects and the errors. Furthermore, the sample size nj from each center is 

increased from 50 to 400. According to the probability estimates of both the equivalence 
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of the two treatIllents and the non-inferiority of HI to H2 defined with 6. ,ce 0.01, given III 

Table 2, it seems that the nDP model outperforms the normal model by a small margin. 

Ho.vever, medialls (resp. means) of the posterior samples of ()I from the nDP model alld 

the normal model arc 0.0316 (rcsp. 0.(304) and -0.0005 (resp. -0.0005), respectively, 

wherein thc fonner estimates arc much closer to the true value HI = 0.05 than the latter 

Olles. Further, similar empirical distributions of post.etior samples of t.he cent.er effects f3l) 

from the two methodologies to those given in Figure 2, arc observed ( not included here). 

That is, c::;tilllate::; of individual cent.er effect from the normal model t;pread over a small 

range of values in clifferent iterat.ions. For instance, post.erior samples drawn from FI for the 

normal model concentrate over the interval (0,2.5). On the contrary, for the nDP model, 

there are different values of estimates of center effects over a much larger range for different 

observations from the same center in each iteration, wherein some of them may be identical to 

each other and some of them arc substantially larger or smaller than the others, as displayed 

in the left column of Figure 2. For example, in each iteration, there arc two major clusters 

of center effects wit.h values roughly equalling.) and 10, respectively, for both centers 3 and 

4. Indeed. inheritecl from t.he clist.inct dust.ering features of nDP, cent.er cffectR of Rome 

particular observations are often estimated to take the same value as center effects of other 

observat ions from the same center or different centers throughout different iterations of the 

prupo::;ed algurithm. Among all different. M iteratiun::;, with possibly different. collectiuns of 

estimates of t.he cent.er effect.s, we selectecl the "best", or the most. represent.ative, it.eration 

that corresponds to the largest value of a proxy of LPML, denoted by LPMUk), which is 

defined as in (13) with CPOij replaced by 

From the resulting "best" iteration, the estimate of e1 equals 0.032, which is close to either 

the median (0.0316) or the mean (0.0304) given above. Eight histograms of center effects 

estimates arc constructed in Figure 5 with respect to both the center they belong to and 

their true values, 0,3,5, and 10 (from top row to bottom row), during the generation of the 

dataset. Class yvidths for these histograms arc chosen as small as 0.1 such that estimates 

uf center effects fur different ubservations arc stacked into the same bar if and unly if their 
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\'(tilles arc identical. Consequently, for instance, the two longest bars from botlt graphs at the 

top row contain only duplicates of center effects estimates as -(J .. 511 alld 0.553, rcspcctiwl,·. 

frolll cClII ('rs 1 and 2. This shows t ha t the center effects distri bu I ions for centers 1 alld 2, F, 

and r'2, are clustered logpther by the nDP prior, which justifies that the two center eflects 

distributions, or equi\'akntly, the two centers, an: similar acroroing to definition of this 

last dataset. f\.loreover, most (> 95% of) center effects with true values as 0 are estimated 

to cluster with one another into two major clusters, and their estimates arc either of the 

two above values that are close to O. That is, a large numlJer of observations in center 1 

aI'f~ estimateo to have the same center effects estimate, f'ither -0.511 or 0.553, as man.v 

observations in center 2, demonstrating borrowing of information both within center and 

across centers that arc similar. Analogous interpretations based OIl the other six histograms 

at the other :3 rows of Figure 5 can be lllade. For instance. most individual center effects fur 

different observations are estimated to be close to the true values, 3, 5, and 10, as displayed 

in the 3 respective rows. In summary, this demonstrates that the special clustering features 

of the nDP result in accurate estimations of both the treatment effects and the random 

c('Iller c:ffect.s. 

[Table 2 about here.] 

[Figure 5 about here.] 

5.2 Application to Scleroderma Lung Data 

We analyze the Scleroderma lung study as described in Section 1.1. Our main goal here is 

to assess the efficacy of the oral CYC treatment over the placebo while accounting for the 

cent.er effects. We take the difference of Fye at baseline from Fye values at week 18th a.'3 

the elldpoillt here, and fit the following model without any covariate (Indusioll of covariat.e 

can be done in a straightforward way), 

FYCijt = Ot + (3ij + eijt; i = 1,2" .. ,145; j = 1,2"" ,13; t = oral CYC, placebo. (15) 

Analogous to Figures 4 and 2, Figure 6 presents the empirical distributions of posterior 

samples of the treat.ment effect OJ, T, and the 13 cent.er effects from both the nD P model 
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and the normal model. Histograms of the samples from the nDP model are displayed, with 

their corrcsponding density estimates by kernel smoothing techniques represented by solid 

lines. Dashed lines are kernel density estimates based on posterior samples from the normal 

model. First of all, in the plot of estimates of T, the dashed line centers on the interval 

(0.005,0.01), while the solid line spreads over a wider range on (0.005,0.03). Based on our 

argument justified wit h respect to Figure 2, that large magnitude of T indicates high accuracy 

in estimation of the treatment effects, this suggests that inference by the nDP model is more 

accurate than that by thc normal model. This is further supported by values of LPML of 

the two models given as -637.024 and -643.326, respectively. In addition, more than half of 

the 13 plots of the estimated center effects distributions reveq,l that the dashed line spreads 

over a smaller range of values compared with the solid line ~n the same plot. That is, the 

nanual l1ludd lellds tu result ill estilllat.cd center dfects distributiulls Oil a smaller range of 

values, compared with the nDP model. Such a phenomenon that also appears when the 

second simulated dataset is analyzed (referred to the right column of Figure 2) may not be 

desirable as this implies that the center effects distributions are not estimated properly. 

[Figure 6 about here.] 

From the nDP model, the treatment effect 01 is estimated to be 1.365, and T is estimated 

to be 0.014. The posterior probability of equivalence of the two treatments, that is, 01 = O2 , 

is approximated as 

! 
0.0006, b..: 0.005, 

0.0019, b.. - 0.01, 

0.0088, b.. = 0.05, 

providing strong evidence that the two treatments are not equivalent. Non-inferiority of 01 

to O2 is also well supported by the posterior probability, which is approximated as 

1 M ! 
0.9003, b.. = U.005, 

AI L 1{~<_2eik)} = 0.8998, b.. = 0.01, 
k=l 

0.8965, b.. = 0.05. 
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However. these posterior probabilities approximated by the normal model is around (J.8S, 

giving not as strong evidence as the nOP model. In addition, the normal model results ill a 

smaller estimated treatment effect as 1.152. 

Lastly, we demonstrate that the nOP model gives a good fit of the FVC dat.a wit h the 

aid of density estimates of new observations ba'ied on the "best" iteration selected according 

to LPl"dOk ), the previousl.\" introduced proxy of LPML. Some of histograms of the FVC 

data with respect to the two treatments (left to right) and the 13 centers (left to right; 

top to bottom) except center 9 as there is no observation collected based on treatment 2, 

shown in Figure 7, suggest that the FVC data exhibit multimodality together with probably 

some extreme observations. Similar to what arc displayed in Figure 3, all density estimates 

from the normal model (not presented here) are unimodal bell-shaped curves, failing in 

capturing either multi-modes or possibly outlying observations. 1\lost density estimates 

from the nOP model plotted in Figure 7 seem fitting the corresponding histograms quitE' 

well, demonstrating good account of capturing multimodality and dealing with outlying 

observations by the proposed methodology. Parameter estimates from this "best" iteration, 

say, k* -th iteration, include OW) = 1.309 and r(k*) = 0.058. All center effects distributions 

are clustered together, except centers 2 and 10. 1\lost estimated individual center effects in 

the major cluster are among a list of values given as -24.405, -9.298, -1.173,0.331,14.922 

and 26.505. Center effects froIll centers 2 and 10 arc estimated to be alllong -22.229, --10.19 

and -1.334. 

[Figure 7 about here.] 

6 Conel usion 

Multi-center clinical trial has become a popular and useful tool for quantitative synthesizing 

and summarizing information in the medical literature. Given the availability of reliable data, 

a multi-center trial should employ robust methods. However, there is empirical evidence to 

suggest that the use of robust methods is low. The random effects multi-center model is 

a parsimonious way of accounting for within-center and between-center variation. In this 

research, we have provided a general modeling framework to analyze the multi-center clinical 
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trial in a mixed model framework. This mixed model framework provides a useful way of 

describing typical data from multi-center trials. While it is argued that the routine use of 

normal distribution may bias the inference on treatment effects, it was also of interest to 

clu.,;tcr the centers uehaving similarly interms of patient population. To achieve this goal, we 

developed a novel Bayesian semi parametric model where we account for the nested center 

effects using the nDP. 

Using a thorough simulation study, and application to a real dataset, we have demonstrate 

the ability of the nDP model in providing accurate estimates of the parameters of interest 

particularly when t.he random center effects is not coming from normal. Since our modf'l 

can provide a way to evaluate the treatment effects correctly even under the distributional 

misspecification, our research can serve as a useful tool for deriving better analysis of multi­

center clinical trials. The insensitivity to outliers and the nice clustering behavior of the 

center effects make our nDP approach an important tool in detecting outlying centers and 

a robust alternative to the traditional parametric analysis. 
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7 Appendix 

An iterative algorithm for sampling random variates of ('f.,7r*,w*.(3*,o.p). f. T. and 

(8 1 •...• 8T ) from their joint posterior distribution ('.vcles through the following fom steps. 

1. Sampling of ((.t.,7r*,w*.(3*,o,p) for the center effects are carril'd out t.hrough the 

following ste4ps: 

(a) Sample the classification variables () for j = 1, ... , C from a multinomial distri­

bution with probabilities 

n, L 

JP'(() = kl"') ex. HZ II L !(Yijd8t , f3tk'" T. Wij), k=I, ... ,K. 
,=11=1 

(b) Sampk t.hC' classification variahles ~ij for j = L .... C and i 

multinomial distribution with probabilities 

1, ... , Til frolll a 

l = 1, . .. ,L. 

(c) Sample 7r* by generating 

(u~I"') ind beta (1 + Tnk, 0' + t TnS) , 
s=k+1 

k = 1, ... , K - 1, 

u~ 1, 

where Tnk = L~=1 I{(;=k} is the number of distributions among F1, .. ·, Fe as­

signed to component k in (8), and constructing Hk = uk n;:11 (1 - 11.;) for k = 

1, ... ,K. 

(d) Sample w* by generating, for k = 1, ... , K, 

(vtkl"') ind beta (1 + nlk, (J + t nlk) , 
s=I+1 

v~k 1, 

l = 1, ... , L - 1, 

h -- ~e. ~n. J 1.- _ . th b f t ff t . d t were nlk L...,)=l L...,,=1 {(J-k,t:,j-l) IS e num er 0 cen er e ec s asslgne 0 

atom l of distribution k in (9), and constructing w1k = v1k n~~\ (1 - l'.:k) for 

l = 1, ... , L. 
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(e) Sample !1tb for k: = 1. ... , K and l = 1, ... , L, according to 

(f) Sample 

( 
K-l) 

(0'1, .. ) '" gamma a" + (K - 1), b" - t; log(l - 'Uk) 

and 

( 

L-l K ) 

(pl",) '" gamma ap + K(L - 1), bp - ~ t; log(l - vtk) 1 

where gamma(a, b) represents a gamma random variable X with density h(xla, b) ex 

2. Sample, from its full conditional distribution, 

where <Pr( '10, L:,) is a r'-variate normal density with mean vector 0 and variance­

covariance matrix L:T For instance, when, = "( is univariate and is distributed as 

2) N(O, <T) , 

C n) 

T L L Wij(YiJI - Bt - f3L(J) 
j=l i=l 1 

C n J C n) 

0,", '"' 2 -2 
T LLWij+cr'Y T L L wfj + cr.:;2 

j=1 i=1 j=1 i=1 

where Wij is the covariate for i-th subject from j-th center. 

3. Sample T from its full conditional distribution, 

That is, 

(TI ... ~ '" gamma a + - '"' n b + - '"' ,",(YO"t - Bt - 13* - W!-v)2 
(

Ie 1 c nj ) 

) T 2 L J' T 2 L L Z) f,'j ,(j Z) I • 

j=1 j=1 i=1 
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4. Fur idcntifiabilit.y i~~ltc. a~~ltltlc t.hat ~ltlll of all (), 's equals zero, that is. (JT = - L:-l 1 0,. 

- 7-1 
For s = 1, ... , T - 1, let ()s = L'=I,'#8 ()i' Sample ()s for s = l. .... T - 1 from its full 

conditional distribution, 

(16) 

where Bs = T[Lf=1 L;~1 I{t=s) + L~~1 L;'~1 I{t=T}J == !1fT with At being the total 

number of observations among N = Lf=1 nj satisfying the events {t = s} or {t = T}, 

and 

4' When there are T = 2 treatments, we assume that ()! = -()2 == () for identifiability 

issue. We sample fh from its full conditional distribution, 

( 17) 
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Figure 1: Boxplots of posterior samples of 01 based on the 
second and the third simulated datascts with respective error 
distributions as t with 5 degrees of freedom (upper graph) and 
Cauchy distribution (lower graph) assuming nOP and normal 
distributions on center effect distributions. 
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Figure 2: Empirical distributions of posterior samples of T, 

and (3ij for j = 1, ... ,4 (from top to bottom) based on the 
second simulated dataset with error distribution as Student's t 
distribution with 5 degrees of freedom assuming nDP (left) and 
normal (right) distributions on center effect distributions. 
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Figure 3: Density estimates (solid lines: from the nDP model; 
dashed lines: from the normal model) of observations associated 
with the 2 treatments (left to right) in the 4 centers (top to 
bottom) based on the second simulated dataset with error dis­
tribution as Student's t distribution with 5 degrees of freedom. 
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Figure 4: Empirical distributions of posterior samples of 
(it (top row) and 'Y (bottom row) based on the fourth and the 
fifth simulated dataset with respective uniform (ldt column) and 
normal (right column) covariates assuming nOP (histograms and 
solid lines) and normal (dashed lines) distributions on center ef­
fects distributions. 

33 

4 

0 



o 
N 

o 

-5 o 

Center 1 

5 

Center 1 

10 15 

o 
o 

Center 2 

_~lL~___ . __ ..... _. 
i I 

-5 o 10 15 

Center 2 
..... 

o ., 

~ I 

:~J_ill__ _~ __ . ~ . ___ -L1J JL _______ , _______________ _ 
o 
'" 

8 

-5 o 5 

Center 3 

iii i 

10 15 

o 
'" 

8 

-5 o 5 

Center 4 

10 15 

___~_J J ._ ____ : ___________ ~ ____ J _1___ _ ____________ _ 
-5 

-5 

i i i i 

o 10 15 -5 

Center 3 

o 10 15 -5 

o 

o 

5 

Center 4 

JJ 
5 

10 

10 

Figure 5: Frequency hi::lt.ograIll~ of center effect.~ from the 
"best" iteration based on the sixth simulated dataset. True 
values of the center effects are 0,3,5, and 10 from top row to 
bottom row. 
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Figure 6: Empirical distributions of posterior samples of H\, 
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Figure 7: The FVC data (histograms) and density esti­
mates (solid lines) of observations associated with the 2 treat­
ments (left to right) in the 13 centers except center 9 (left to 
right; top to bottom) based on /<,!;ifllutc-' fnilli Ilit "hl,t" dUI/­

liol! h!! ([.';<'lIffliIlY nDP u1I center c(fi;ds (H~t.n!I'/jI/oll" 
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Table 1: Probability estimates of Ilon-inferioritv of f)\ to 
fh based Oil the secoIld and the third simulated datasets 
vvith respective error distributioIls as t aIle! Cauchy distri­
Illltiolls assuming IlDP and normal distributions on CCIl­
ter efTeet distributions. 

Center Effects 
Oistri bu tion 

Error dist.ribut.ion ~ nOP Normal 

t with 5 clf 
0.01 0.991 0.983 
0.05 0.989 0.977 

Cauchy 
0.01 0.997 0.870 
0.05 0.996 0.866 
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Table 2: Probability estimates of equivalence of treat­
lllents and non-inferiority of 81 to 82 (with 6. = Cl,Ol) 
based on the sixth simlliated dataset. 

Probability estimates 
Equivalence of 81 and 82 

Non-inferiority of 81 to 82 
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Center Effects 
Distribution 

nDP Normal 
0.05~ 0.072 
0.675 0.461 


