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Abstract

The primary objective of this paper is to model the win-loss records of matches in a repeated

tournament using the ranks of the teams. The work proposes modifications of Bradley-Terry

(BT) model to make the estimation consistent with the ranks of the participating teams. The

BT model with restricted maximum likelihood estimation involves too many parameters and the

estimates typically lack strict monotonicity. A proposed class of rank-percentile BT models based

on different parametric distribution resolves both the issues. Parameter estimation, goodness-of-fit

using suitably framed test statistic and its null distribution, change point analysis in a nested model

framework, as well as other estimation aspects are discussed in this article. Adaptive variations of

the model that allow estimates to alter are also discussed. For demonstration, National Collegiate

Athletic Association (NCAA) men and women basketball tournament data are considered. The

discussed models provide excellent fit to the historical data using only a few parameters. The fit

validates the ranking procedure implemented by the NCAA. The models can be extended in more

general tournament structures, as shown through an analysis of results from the Indian Premiere

League. The work done has potential for application in the wider domain of paired comparisons.

KEYWORDS: Knockout Tournament, Ranking, NCAA, Restricted Maximum Likelihood, Rank-

percentile BT model, Round-Based Model, Chi-squared goodness-of-fit.
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1 INTRODUCTION

Various national and international sports tournaments are played to choose the best team

from a pool of participating teams or players. Formats such as round-robin, knockout or a mixture

of both are usually the design of these tournaments. While the tournaments played over longer

durations can have a round-robin design, a knockout format is usually played when there is a time-

constraint or there is a large pool of participating teams. The pairing or fixtures in a knockout

design can be random or standard. While more on standard and other variants of the knockout

designs can be seen in Schwenk (2000), for the current work it is sufficient to note that a prior

ranking of the teams is necessary for the design of a standard knockout tournament. The ranking

of the teams for these knockout tournaments are usually given by a panel of experts or is based on

a computerized rating system. There may be occasional controversies surrounding these rankings,

but this work does not examine the process of ranking. Refer to Harville (2003) and Annis and

Craig (2005) for the statistical treatment of ranking in specific example and general context of

sports respectively. Many domestic tournaments like National Collegiate Athletic Association

(NCAA) basketball tournament for men and women have typically been played in a standard

knockout format.

The broad objective of this paper is to explain the historical results of a tournament repeated

over the years using only the seeds or the ranks of the teams. The outcome of NCAA basketball

tournament for men and women played over the years has been taken up as a prime case-study.

These tournaments constitute of 64 teams which are subdivided into four groups or regions with

each group having 16 (ranked) teams. A standard knockout tournament is played within each

group. In the current work, outcomes of the games played every year within the four regions are

compiled as repetitions of a knockout tournament. The manner in which these historical results

are grouped together is detailed in Section 2.

The win-loss data from the games played in sports tournament like NCAA basketball can

be seen as a special category of paired comparisons between objects where the comparisons yield
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a winner and a loser. Accordingly, a broad framework of Bradley Terry (BT) model (Bradley

and Terry, 1952) is adopted in this work. Parameters in a BT model are also referred to as the

strengths of the objects (here teams). These strengths are not surrogates for the true abilities

of the teams. Instead, they measure how much better or worse a team is, when compared with

that of its opponents. Therefore, the modelling approach in this article assumes that the relative

strengths of all the rank orders across the repetitions (years and regions) stays same. Hereafter,

in this article, strength and relative strength will be used interchangeably.

The maximum likelihood estimates of strengths under the traditional BT model need not

reflect a pre-decided rank order. Hence, various modifications of the general BT model are proposed

by linking the strengths of the teams exclusively to their associated ranks. Given the rank order of

the competing teams, it is sensible to consider the restricted maximum likelihood estimates, but

these estimates typically lack strict monotonicity. Percentiles from various parametric distributions

such as lognormal, beta, pareto, weibull, gamma etc. are taken as strength estimates to address this

issue effectively. This distribution based modification also invokes model prudence and becomes

useful in the context of sparse data, as in the case of knockout tournament. While the distribution

based models have performed well with NCAA basketball data, a possible extension is proposed

through round based adaptive models that may have greater applicability in other cases. All of

these modifications have been discussed in detail in Sections 3.1 - 3.4.

In order to check the validity of the alternative models, a suitable test statistic is formulated

by extending the chi-squared goodness-of-fit test. An intuitively appealing clubbing algorithm is

implemented to apply the test on sparse data. A simulation study is undertaken to reflect on the

null distribution of the test statistic. The details of the testing procedure, simulation and selection

criteria are given in Section 3.5. It is observed that the model may change with different forms

of replication. Hence, a test for possible change point in the strength structure is discussed in

Section 3.6. The change point test can be used to detect a temporal change. However, in this

article it is applied to see if identical model parameters are adequate for NCAA men’s data vis-a-vis

women’s data.
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The proposed modifications provide an adequate fit for NCAA data. Consequently, it is

validated that the strengths of the teams are a function of their assigned rank only and this provides

a testimony to the ranking process adopted by the NCAA. The result of the analysis done in the

illustrative example of NCAA basketball context is detailed in Section 4. The methodology adopted

here can be extended to other tournament designs. As an illustration, we consider results from

different seasons of Indian Premiere League. A summary of the article alongwith other possible

extensions and applications are discussed in Section 5.

1.1 Related Literature

The statistical literature does not talk about inferences related to the modelling of historical

data from sports tournaments using the paired comparison models (e.g. BT model), but there is a

considerable amount of work on knockout tournaments, and paired comparison model estimation

from games of various structural forms. In a racing tournament (e.g. auto racing), the participants

are not compared in pairs but a natural extension of the BT model is used by Graves et al. (2003)

to draw inferences about driver’s abilities. Games like tennis and racquetball involve multiple

rounds in a match. Modifying the traditional models to explain the win-loss records in such games

is done in Strauss and Arnold (1987). In the context of a knockout tournament, the possibility

of a particular structure favoring a definite seed is dealt with in Schwenk (2000). A considerable

section of the statistical literature focuses on optimal designs of the sports tournament (Glickman

and Jensen, 2005; Graßhoff and Schwabe, 2008) and temporal evolution of the strengths of teams

as an attempt towards prediction (Cattelan et al., 2013). Yet another section of the literature

concentrates on variations in the BT model to incorporate various changes in the strength structure

of the teams. Some notable contributions in this regard are mentioned in the subsequent section.

1.2 Bradley-Terry Models

Bradley and Terry (1952) proposed a simple probability model to explain the win-loss record

of ‘teams’ or objects in a paired comparison design of the experiment. We refer to one run of such

design as a tournament. The model assumes that a latent variable, si expresses the worth or
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‘strength’ of the ith team. Strength of all the teams are expressed as a vector and named as

strength-vector. A typical strength-vector for t teams is expressed as S = {s1, s2, s3, . . . , st}. The

strength-vector measures the tendency of win of ith team against all the opponents. According

to the BT Model, the probability of win of ith team against jth team is given as πij = si

si+sj
∀ i, j ∈

{1, 2, . . . , t}. S is estimated by maximizing the likelihood which is same as maximizing the log-

likelihood. If the comparisons are independent, the log-likelihood can be written as

LL(S) =
t∑
i=1

t∑
j=1

wij

(
ln si
si + sj

)
, (1)

where wij denotes the number of wins of ith team against jth team. It is noted that S is identified

only up to a scalar multiple. Hence, it is generally assumed that ∑
si∈S

si = 1.

The BT models have been extended by making changes to functional form of the expression

of πij. Agresti (2002) incorporated different winning probabilities for home and away matches. Rao

and Kupper (1967) modified the model to incorporate the change in abilities when ties are allowed.

The order in which pairs of objects are presented can also alter their winning probabilities. This

order-effect has been accounted for in the extension of BT model given by Davidson and Beaver

(1977). The present article discusses model-extensions to incorporate rank-order which are decided

prior to the tournament.

2 DATA

Results of NCAA basketball tournament played over 29 years (1985 to 2013) for men and 20

years (1994 to 2013) for women have been compiled for the analysis. NCAA basketball tournament

has a standard knockout design and the participating teams are chosen from a pool of collegiate

teams. During the considered years, 64 teams 1 were chosen for the knockout round. The panel

considers various intangible factors besides simple win-loss records. Perceived strength of the

schedule in the regular season, statistical index (RPI) of the participating teams, AP poll and
1There are more than 64 teams in some of the latter years, with some teams playing an additional knockout

match for making it into the final 64.
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Coaches poll are some of the references that are used by the experts.

The overall ranking of the 64 teams is not publicly announced but the experts create four

groups of 16 teams each and announce their ranking within each group. The 16 teams in a group

play a standard knockout tournament among themselves. The win-loss records of various rank

orders in such a sub-tournament played every year is used for the analysis. The complete rank

based study of the win-loss records assumes that all the teams with identical ranks in different

groups across years have the same strength. The knockout tournament played within each group

selects a winner. The winners of the four groups thereby play the Final Four. The result of the

final four is not considered in the current study as the relative ranking of the teams in different

groups is not known. For each year, four replications of a knockout tournament among 16 rank

orders are recorded for men and women. Thus a total of 80 ( four groups for 20 years) replications

or brackets for women and 116 (four groups for 29 years) replications for men are analyzed.

The outcomes of all of these replications is reported in Table 1 for women and Table 2 for

men. As an illustration of the table, one can see that of the 33(22+11) times rank-1 team has faced

rank-2 team for women’s tournament, rank-1 has won 22 encounters. It is interesting to note that

a 16th-ranked team has never been able to defeat a 1st-ranked team in 116 replications for men.

Similarly, no 15th-ranked team has been able to defeat a 2nd-ranked team and no 14th-ranked has

been able to defeat the 3rd-ranked team in 80 replications for women.

3 MODELS AND THEIR SELECTION

Consider a standard knockout tournament with t teams where t = 2k for some positive

integer k. Here, k represents the number of rounds of elimination required to select a winner. In

the NCAA college basketball data, t = 16. Clearly, the number of rounds to select a winner is

four in this context (k = 4). Let Π = ((πi,j)) denote the win probability matrix where πi,j denote

the probability that ith ranked team defeats a jth ranked team (i 6= j). The possibility of a tie is

excluded in the analysis. Hence, the matrix Π can be characterized by
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Table 1: Win Matrix: NCAA women college basketball

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 22 17 37 21 3 2 39 37 0 1 1 3 0 0 79
2 11 0 20 3 1 14 43 0 0 25 8 0 0 0 80 0
3 7 20 0 4 0 37 5 0 0 2 14 0 0 80 0 0
4 10 3 2 0 35 0 0 0 2 0 0 15 74 0 0 0
5 3 1 0 23 0 1 0 1 0 0 0 63 3 0 0 0
6 1 4 20 0 1 1 1 0 0 0 57 0 0 0 0 0
7 1 10 3 0 0 0 0 0 0 53 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0
9 2 1 0 0 1 0 0 40 0 0 0 0 0 0 0 1
10 0 2 0 0 0 0 27 0 0 0 0 0 0 0 0 0
11 0 0 9 0 0 23 1 0 0 0 0 0 0 0 0 0
12 0 0 0 1 17 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 6 3 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Win Matrix: NCAA men college basketball

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 19 12 29 29 6 5 46 55 3 2 18 4 0 0 116
2 20 0 23 2 0 21 50 2 0 25 10 1 0 0 109 0
3 8 14 0 2 2 36 6 1 1 9 24 0 0 99 1 0
4 14 4 3 0 33 2 2 2 2 2 0 18 91 0 0 0
5 7 3 1 29 0 1 0 0 1 1 0 76 11 0 0 0
6 2 6 27 1 0 0 3 0 0 4 77 0 0 12 0 0
7 0 17 4 0 0 3 0 0 0 71 0 0 0 1 3 0
8 10 2 0 4 2 1 1 0 56 0 0 0 1 0 0 0
9 5 1 0 0 1 0 0 60 0 0 0 0 1 0 0 0
10 0 17 3 0 0 2 45 0 0 0 0 0 0 1 3 0
11 3 1 12 0 0 39 3 0 0 1 0 0 0 3 0 0
12 0 0 0 11 40 0 0 1 0 0 0 0 8 0 0 0
13 0 0 0 25 3 0 0 0 0 0 0 3 0 0 0 0
14 0 0 17 0 0 2 0 0 0 0 0 0 0 0 0 0
15 0 7 0 0 0 0 1 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a) πij ∈ [0, 1] and πii = 0; ∀ i, j ∈ {1, 2, . . . t}

b) πj,i = 1− πi,j where i 6= j

3.1 Straight-Rank Model and Traditional Bradley Terry Model

Straight-Rank-model: This model directly uses the rank order and does not involve any estimation.

However, it is not within BT framework. The win probability matrix Π is specified by defining

πi,j = j
i+j . Generally, win proportion of a first ranked team against a second ranked team is

expected to be equal. However, in this model the first ranked team has a 66.67% chance of

winning against the second-ranked team which may be too high. All the subsequent models are

under the BT framework.
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BT models with strength as Reversed-Rank: The possible limitations of the Straight-Rank-Model

is addressed through Reverse-Rank-model. This model lies within the framework of BT where the

strength-vector is taken to be the reverse of the rank-vector. More explicitly, si = t+1−i where t is

no. of participating teams. In this case, Π is specified by defining πi,j = t+ 1− i
2t+ 2− i− j . Under this

model, with 16 teams, the first-ranked team has 16
31 chance of winning against the second-ranked

team, while with 4 teams, the chance is 4
7 .

BT models based on Pre-decided Strength: The strength-vector for this BT Model, is decided

by the modeler in advance. It incorporates the valued opinion of the modeler and all possible

perceptions. In other words, it is an intuitive judgment about the relative strengths of all the

teams. The strength-vector is fixed as [100, 95, 90, 85, 80, 75, 70, 60, 50, 40, 30, 25, 20, 15, 10, 5] in

the case of NCAA basketball data. There is less difference in the strengths of various rank orders

in the tail than in the middle. Alternatively, a modeler can assume that there is more difference

in the tail than in the middle and define pre-decided strengths accordingly. It is important that

the modeler should propose such pre-decided strengths based on domain knowledge and not using

the data. These pre-decided strength vectors are surrogates for a judgment about the spread of

the relative strengths of each team.

BT models with Maximum Likelihood Strengths: This model requires estimation based on the

data. Maximizer of the log-likelihood (1) is taken to be the strength vector for this model. The

optimization problem of minimizing the negative of log-likelihood is subject to sj ≥ 0, j =

1, 2, . . . , t. , s1 = 100. Huang et al. (2006). Note that the identification of strength-vector,S is

done by fixing s1 = 100. Thus, the optimization is reduced to a problem that can be solved using

L-BFGS-B algorithms (Byrd et al., 1995). Yet another estimation issue arises when the entire

group of objects can be classified into subgroups say A and B, such that none of the members of

subgroup A have defeated any member in the subgroup B. The problem in such a case is that there

is no maximizer of the likelihood (Hunter, 2004). Such estimation issues can be handled in the

Maximum Likelihood based model by increasing the lower bound on the strengths to a fixed ε (> 0).

As the optimization can be computationally taxing, Hunter (2004) devised a special class of the
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EM algorithm to arrive at the maximum likelihood estimate. This specific iterative alforithms is

referred to as MM algorithm as it involves Minorization followed by Maximization. The algorithm

is implemented in R using BradleyTerry2 package (Turner and Firth, 2010). Accordingly, three

different computational pathways have been chosen to arrive at maximum likelihood estimate

(MLE) of the strengths in this article, namely:

(a) Maximum Likelihood with Optim: Using ‘Optim’ package in R, with L-BFGS-B algorithm

and lower bound on the strength estimate as 0.001 .

(b) Maximum Likelihood with Exponential Strength: Expressing the strengths as exponential

function and then using ‘Optim’ in R with L-BFGS-B algorithm and fixing lower bound on

the exponent to be ln (0.001) .

(c) Maximum Likelihood by MM: Using the BradleyTerry2 Package in R to arrive at MM algo-

rithm based estimate of the strength.

While the modeler may expect the higher ranked team to have greater strength, the MLE of S

may not reflect the same.

3.2 BT Models With Restricted MLE Strengths

To have an estimate consistent with the rank order, it is expected that the strengths obey

monotonicity constraint, s1 ≥ s2 ≥ . . . ≥ st. Consequently, it may be prudent to build in this

restriction while carrying out the maximum likelihood estimation. The theoretical derivation of

the resultant estimated strength is neither straightforward nor may the solution have any closed-

form. Therefore, a few solutions in the framework of isotonic Regression (corresponding to different

norms) using Pool Adjacent Violators Algorithm (PAVA) algorithm (Mair et al., 2009) were tried

out. Eventually, in any given data implementation, the solution having the maximum likelihood

among the candidate for monotonised solutions is taken as the Restricted Maximum Likelihood

(RML) estimate of strength. While restricted estimation can be modified to have efficient algo-

rithms, it is known and verified that the optimal Restricted Maximum Likelihood (RML) will

indeed be on an extreme direction defined by the feasible region. This would imply that many of
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the inequalities in monotonicity constraint would actually be replaced by equalities in the optimal

RML. Equality of strengths across teams with different ranks is a disincentive in using the RML

approach.

3.3 Distribution based Rank-percentile BT models

A group of distribution based rank-percentile methods ensure a smoother impact of rank on

the estimated strengths. In this framework, it is assumed that the strengths of the teams corre-

spond to percentiles of some standard probability distribution. One can either look for uniform

percentiles ( 1
t+1 ,

2
t+1 , . . . ,

t
t+1) which are used in this article or look for some different pre-specified

percentiles. These pre-specified percentiles have to decided by the modeler before looking at the

data. One or more parameters of such models may not be specified to begin with and consequently

these parameters have to be estimated by the maximum likelihood principle. The proposed meth-

ods have the additional advantage of model prudence, as they involve very few parameters. A

small number of parameters are not a deterrent to a good fit. On the contrary, an excellent fit for

these models will be demonstrated in Section 4. This model is also particularly useful in handling

sparse data created from a knockout design; e.g. in a standard knockout tournament of 16 teams,

rank-1 team plays rank-15 very rarely. Under this model, strengths are specified as

si = F−1
(

i

t+ 1

)
∀ i ∈ {1, 2, . . . , t} , (2)

where F is the cumulative density function of the concerned distribution and t is the number of

teams. Using (2) and (1), the log-likelihood for distribution based models is written as

LL(θ) =
t∑
i=1

t∑
j=1

wij

ln
F−1
θ

(
i
t+1

)
F−1
θ

(
i
t+1

)
+ F−1

θ

(
j
t+1

)
 . (3)

Similar to the approach in MLE, the minimizer of negative log-likelihood for distribution based

rank-percentile is calculated using L-BFGS-B method. The change in scale parameters in various

distributions multiplies the strength estimates by a scalar and hence need not be estimated. These

models can be further categorized on the basis of number of estimated parameters. The models
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considered in this article are:

1. No parameter estimated from the data:

• Triangular distribution

• Exponential distribution.

2. One parameter estimated from the data:

• Normal distribution with fixed mean and standard deviation estimated from data.

• Symmetric Beta distribution.

• Lognormal distribution with only the shape parameter estimated from the data.

• Gamma distribution with shape parameter estimated from the data.

• Chi-Square Distribution.

• Weibull distribution with shape parameter estimated from the data.

• Pareto (I) distribution with shape parameter estimated from the data.

3. Two parameters estimated from the data: Asymmetric Beta Distribution.

3.4 Models with Round-Based strengths

Each NCAA basketball tournament from which the data has been compiled has four rounds of

games. Hence, a round-based strength model which allows the strengths of the teams to vary in

each round is postulated. In general, any of the estimated model in the previous sections can be

used for this adaptive framework. However, distribution based rank-percentile strength models

have a few estimated parameters and strict monotonicity of the strength estimates are maintained.

This advantage ensures estimation of the models even in the case of sparse data. Accordingly, only

rank-percentile models are considered for this modification. Besides round based variations in

parameters, modifications are incorporated in this model to verify if in the round three and round

four of NCAA basketball knockout tournament, all the teams start playing with equal strengths.

Thus, depending on how the parameters of the considered rank-percentile models are allowed to
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vary over different rounds, various alternate models can be proposed. The following round based

variants of rank-percentile models are compared in this article:

• Parameter of the distribution is allowed to be different in each round.

• Parameter of the distribution is constrained to be the same in the first two and the last two

rounds.

• Parameter of the distribution is constrained to be the same in the first three rounds.

• Parameter of the distribution is constrained to be the same in the first three rounds and in

the last round all teams have equal strength
(
si = 1

2 ; ∀i ∈ 1, 2, . . . , t
)
.

• Parameter of the distribution is constrained to be the same in the first two rounds and in

the last two rounds all teams have equal strength.

• Parameter of the distribution is allowed to be different in first three (two) rounds and in the

last (two) round(s) all teams have equal strength.

3.5 Model Selection and Goodness-of-Fit

Building block of the Test Statistic (TS): In this section, statistical validation of various models

described in section 3.1 through 3.4. is taken up under the broad framework of goodness-of-fit. A

simple null hypothesis is H0 : Π = Π0 where Π = ((πij)) and Π0 =
((
π0
ij

))
, with πij being the

conditional probability of win of rank-i over rank-j, given that the i-ranked team play against the

j-ranked team. Since this is essentially a test of multiple proportions (πij = π0
ij with 1 ≤ i < j ≤ t),

a natural option is to consider the test statistic, T = ΣΣ
1≤i<j≤t

Tij with

Tij = (wij − Eij)2

Eij
+ (wji − Eji)2

Eji
= Nij

(
wij
Nij

− π0
ij

)2

π0
ij

(
1− π0

ij

) (4)

where Eij = Nijπ
0
ij. Intuitively, the test statistic is formed on the basis of comparison between

empirical probability (wij

Eij
) with hypothesized probability (π0

ij) . For a round-robin tournament,
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since Nij is non-random and is the same as n (number of times tournament is played), it is easy

to note that T→χ2
t(t−1)

2
as n→∞.

This article deals with seemingly more terse problems encountered in a (standard) knockout

structure of the tournament. The complexity arises because Nij’s are not only typically random,

but also Nij << n for some pairs of teams. The individual Tij may still approximately follow a χ2
1

distribution for sufficiently large Nij, but a uniform guideline for largeness of n may not be defined.

Moreover, as the actual distribution of Tij is discrete, its approximation to χ2
1 is susceptible to

the typical consideration of the continuity correction. However, in the aggregate form of T (test

statistic), the support is lot more dense and consequently the approximation to χ2 distribution is

more effective.

Clubbing: At the core of the development of the postulated χ2 distribution from the binomial win-

loss data (tournament outcome) is the issue of normal approximation to the binomial distribution,

as in the case of simple test of proportion. For the validity of such an approximation, one needs the

expected number in each ‘cell’ (expected entries in a win-matrix) to be at least five (Eij ≥ 5). In a

standard knockout tournament, certain pairs of ranked teams have less chance of playing against

each other and thus they have even lesser chance of recording a win. Consequently, even for large

enough n, one observes very small Eij (<< 5). As is typically done for a chi-square goodness-of-fit

test, this requires clubbing of cells.

Let Γ = {(i, j) : 1 ≤ i < j ≤ t}. Any clubbing operation can be mapped with a partition

{ψ1, . . . , ψq} of Γ (i.e. ψk
⋂
ψl, ∀k 6= l,

⋃q
k=1 ψk = Γ ) such that ∀ pairs (i, j) in the same ψk,

the observed and expected data are clubbed together leading to a term T ck of the form [analogous

to (4)]: (
Xc
k − Ec

k

)2

Ec
k

+

(
X̃c
k − Ẽc

k

)2

Ẽc
k

, (5)

where Xc
k = ∑

(i,j)∈ψk
wi,j ; X̃c

k = ∑
(i,j)∈ψk

wj,i ; Ec
k = ∑

(i,j)∈ψk
(wi,j + wj,i)πi,j

and Ẽc
k = ∑

(i,j)∈ψk
(wi,j + wj,i)πj,i.
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Asymptotically (as n → ∞ ) T ck has a chi-square distribution with 1 degrees of freedom and

eventually test statistic

T c
(

=
q∑

k=1
T ck

)
(6)

has an asymptotic Chi-square distribution with q degrees of freedom where q the number of non-

zero cells left after the clubbing.

The objective of clubbing is to ensure that the expected number of wins is at least five in each

post-clubbed cell. The larger the clubbing, the less powerful the test becomes. Purely operational

criterion requires minimum clubbing to maximize the number of cells left after clubbing. Such

a procedure ensures a larger degrees of freedom but fails to have an intuitive appeal. E.g. E1,15

and E2,8 are typically very small in a standard knockout for 16 teams and can be clubbed as per

an operational criteria, but such a clubbing can’t be justified just on the basis of small value of

expected wins. Hence, a more intuitive clubbing algorithm is considered in this article. Using

the algorithm, only adjacent cells are clubbed and the procedure is symmetric. E.g. if needed,

E1,15 is clubbed with E1,16 and symmetrically, E15,1 is clubbed with E16,1. The clubbing algorithm

proposed is given in Appendix A. Hereafter, T c represents the clubbed test statistic according to

the algorithm adopted here. In order to justify the inferences drawn from the clubbed test-statistic,

T c its distribution is explored through a simulation study.

Simulation: It will be seen in Section 4 that strengths from uniform percentiles of a lognormal

distribution provides a great fit for both men and women basketball tournament outcome. Hence,

a simulation study is undertaken for n = 100 and t = 16 so that the results are approximately

applicable in both of these contexts. Accordingly, the data generating process is chosen to be

uniform percentiles, as in (2), of lognormal distribution. The shape parameter sigma in Figure 1

and Figure 2, refers to the standard deviation of log(strength). After each round of simulation,

a parameter for the lognormal rank-percentile model is estimated. The estimated strength is

then used to calculate an instance of Test-Statistic T c as in (6) and the corresponding degrees of

freedom that corresponds to the number of cells left after clubbing. The degrees of freedom is also
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Figure 1: Distribution of Test statistic T c vis-a-vis χ2
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NOTE: Different plots are corresponding to number of clubbed cells which also matches the degrees of freedom.
The plots are based on simulation from a rank-percentile BT model based on lognormal distribution

random because of the randomness of Nij’s. The distribution of T c for various degrees of freedom

are compared with the true density plot of chi-squared distribution with corresponding degrees of

freedom. The near perfect visual fit of the distributions is demonstrated in Figure 1. This validates

the p-values obtained in Section 4 to quantify the model fit for real data from NCAA.

For broader applicability, the distribution of Test Statistic, T c, for various parameters of

lognormal model is also explored through the simulation. Similar to the approach described in the

previous paragraph, the distribution of T c is explored for varied degrees of freedom and is found

to fit well to the chi-squared distribution. For brevity, only the test statistic corresponding to the

modal degrees of freedom so obtained from the simulation is visually compared with the corre-

sponding chi-squared distribution in Figure 2. All the considered comparisons pass the traditional

goodness-of-fit test. The KS test statistic for the comparisons is found to be very small. Thus,

the actual difference between the cumulative density function of the chi-squared distribution and

the simulated distribution of TS is typically small. Moreover, the visual fits of the simulated data
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Figure 2: Distribution of Test statistic for different shape parameter
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NOTE: Plots are given for modal values of the number of clubbed cells in each case. Simulation is performed for strengths from

lognormal distribution, with different shape parameters sigma. The plots are compared to a chi squared distribution

shows that the tail of distribution (essential for p-value calculation) is almost overlapping.

In addition to verifying the applicability of p-values, the simulation study of different pa-

rameters of lognormal is used to briefly explore the distribution of the estimated parameter and

estimated strengths. It is observed that the estimate of the strength from the lognormal based

percentile strength model follows a normal distribution. It is also noted that the standard error of

such estimates increase when the true parameter decreases. A visual comparison of the distribution

of the estimated parameter with a corresponding normal distribution is reported in Figure 3. With

such a variation in the estimated parameter, its impact on the 90% confidence interval of various

strengths is shown in Figure 4. Like the parameter estimate, the estimated strength is also found

to follow a normal distribution. The distributional properties of such estimates are not explored

in this article.

Alternative model selection criteria: A Model having higher number of parameters may not be

preferable if it provides only a marginally better fit. Typically to address that, model selection
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Figure 3: Distribution of the estimated shape parameter vis-a-vis Normal Distribution
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NOTE: This is from simulated rank-percentile BT models based on lognormal distribution with different shape
parameters sigma.

criteria AIC = 2p − 2 ln(L) is used where, p is the number of parameters estimated to get the

strength-vector and L is the maximized likelihood value for a given model. Alternatively, a model

selection criteria which incorporates the sample size (n) is given by AICc = AIC + 2p(p+1)
n−p−1 . Lower

values of these selection criteria imply a better model.

3.6 Change Point Testing

A typical change point test can be done within the nested model framework to explore the

possibility of temporal change in structure in any of the model. However, the scope of the change

point test is broader. For example, the combined data for men and women NCAA basketball tour-

nament can be analyzed effectively postulating that the same model (with identical parameters)

fit both the groups. Alternatively, repetitions for women and men can be analyzed separately to

yield two different estimated strength-vectors. The test adopted in this nested framework can be

explicitly used to test for a single strength-vector (null) against two different strength vector (al-
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Figure 4: Comparison of estimated strength
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NOTE:For each rank, 5 percentiles, 95%, 75%, 50%, 25%, 5%, of its strength estimates are indicated in the plot.
The mean of the estimates, almost coinciding with the median, is connected by a line plot. Since the estimated
strengths are almost unbiased, this also provides a visual comparison of the strengths across ranks for varying shape
parameter of lognormal distribution. The strength of the first rank is fixed as 100 and hence not plotted.
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ternate). This approach effectively verifies if the same relative strength-vector explains the ranking

order in men and women tournament or the vectors are significantly different. The test statistic for

the change point test is 2
(
loglikelihoodalternate − loglikelihoodnull

)
. The test-statistic follows

a chi-square distribution with the degrees of freedom given by the difference in the number of

parameters estimated by the two models. The results of this test for various models that provide

good fit are reported in Section 4. The test can also be modified to verify if the round based

evolving strength estimate is significantly different from the constant strength estimate.

4 ANALYSIS

In this section the results of all the models and change point analysis applied to NCAA basketball

tournament for men and women are discussed.

A comparative study of three alternative path for computing MLE, as given in Section 3.1,

is summarized in Table 3. The table provides details of the fit and the estimates. The strength

estimates are found to be approximately equal. Similar strength estimates lead to similar RML

as well. Consequently, without loss of generality, all subsequent analysis for maximum likelihood

strength models is done using MM algorithm.

Table 3: Comparison of MLE and RML estimates: NCAA Basketball - Men and Women combined

ML (optim) ML (exp. strength) ML (MM alg.)

MLE RML MLE RML MLE RML

Test Statistic 18.54 19.18 18.53 19.17 18.54 19.24
p-value 10.04% 8.42% 10.06% 8.45% 10.02% 8.28%
neg LL 1457.76 1458.31 1457.76 1458.31 1457.77 1458.35
AIC 2945.52 2946.62 2945.52 2946.62 2945.53 2946.70
AICc 2948.19 2949.29 2948.19 2949.29 2948.19 2949.36

NOTE: The degrees of freedom is 12 and the number of parameters is 15, in each case.
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Women: Results from all the models fitted to the women’s data is reported in Table 4. The table

reports critical information pertaining to model validation and selection criteria viz. AIC, AICc

and p-values along with the minimum negative log-likelihood estimated from the model.

Table 4: Summary of Results: NCAA Women’s Basketball

Model d.f. TS p-value neg LL parameters AIC AICc

Straight-Rank 20 62.77 2.6E-06 551.89 0 1103.77 1103.77
Reverse-Rank 23 139.19 1.3E-18 597.39 0 1194.78 1194.78
Pre-Decided Strength 21 125.12 8.2E-17 589.08 0 1178.15 1178.15
MLE using MM 1 7.88 0.50% 509.44 15 1048.88 1056.38
RML 3 24.74 1.8E-05 522.35 15 1074.69 1082.19
Rank-percentile based on
Normal dist. 21 140.33 1.2E-19 601.99 1 1205.98 1206.03
Triangular dist. 22 222.74 3.8E-35 656.01 0 1312.01 1312.01
Symmetric Beta dist. 18 87.40 4.2E-11 567.44 1 1136.89 1136.94
Asymmetric Beta dist. 17 25.78 7.86% 527.93 2 1059.87 1060.02
Exponential dist. 21 53.57 0.01% 542.29 1 1086.58 1086.63
Lognormal dist. 17 14.48 63.27% 523.67 1 1049.34 1049.39
Gamma dist. 18 25.77 10.52% 527.93 1 1057.85 1057.91
Weibull dist. 17 21.60 20.06% 526.16 1 1054.33 1054.38
Pareto dist. 16 46.85 7.2E-05 534.33 1 1070.65 1070.70

NOTE: Rank-percentile BT models based on lognormal provides a superlative fit to the women’s data.

Rank-percentile BT model based on lognormal distribution is found to be the best fit with

a largest p-value of 63.27% and minimum AICc value of 1049.39. The AIC criteria for the MLE

model is found to be the least. This is because the AIC criteria does not sufficiently penalize the

number of parameters. Rank-percentile BT model based on weibull distribution also provides a

good estimate of the strength with a p-value of 20.06%. Besides, rank-percentile models based

on gamma distribution also has a large p-value of 10.52%. Such high p-values indicate that the

ranking procedure for women has been consistent over the years. Though, straight-rank model
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does not fit the data well, it fares better than pre-decided strength or rank-percentile models based

on triangular distribution.

Table 5: Summary of Results: NCAA men’s Basketball

Model d.f. χ2 TS p-value Neg.LogLkhd # par. AIC AICc

Straight-Rank 26 56.32 0.05% 942.95 0 1885.90 1885.90
Reverse-Rank 28 71.76 1.1E-05 952.89 0 1905.79 1905.79
Pre-Decided strength 28 85.28 1.1E-07 958.05 0 1916.10 1916.10
MLE using MM 9 16.75 5.27% 918.62 15 1867.25 1872.05
RML 9 16.67 5.41% 918.63 15 1867.25 1872.05
Rank-percentile from
Normal dist. 25 64.88 2.2E-05 947.70 1 1897.40 1897.44
Triangular dist. 29 145.56 1.8E-17 1002.44 0 2004.88 2004.88
Symmetric Beta dist. 26 66.08 2.4E-05 947.74 1 1897.49 1897.52
Asymmetric Beta dist. 24 39.80 2.25% 932.17 2 1868.35 1868.45
Exponential dist. 26 49.48 0.36% 935.38 1 1872.75 1872.79
Lognormal dist. 25 36.64 6.25% 931.80 1 1865.61 1865.64
Gamma dist. 25 39.80 3.06% 932.17 1 1866.35 1866.38
Weibull dist 25 40.38 2.67% 932.37 1 1866.75 1866.78
Pareto dist 25 52.48 0.10% 942.35 1 1886.69 1886.73

NOTE: Rank-percentile BT models based on lognormal distribution is the best fit as per each of the three criterion.
The corresponding strengths are plotted in Figure 5.

Men: The comparative study of the model fit for men’s data is reported in Table 5. The rank-

percentile BT model based on lognormal distribution is again found to be the best fit to the data.

It has the largest p-value of 6.25% and minimum AIC and AICc value of 1865.61 and 1865.64

respectively, and may be seen as outperforming MLE and RML because of model prudence. MLE,

RML, rank-percentile BT models based on gamma and weibull distribution also provide decent

fit with the p-values given by 5.27%, 5.41%, 3.06% and 2.67% respectively. The fit validates the

ranking for men. As discussed in Section 3.4, there is an apprehension that indeed the strength
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of the various rank order does not stay the same in each round of the tournament. The analysis

for the round based model has been carried out for rank-percentile BT model based on lognormal

distributions and reported in Table 6. Despite the increase in model complexity and consequently

a decrease in the degrees of freedom, the p-value improves to 7.25%. The improvement is seen

for the model where the strengths evolve in the first three rounds and in the fourth round it is

the same as that of 3rd round. AIC criteria (1864.33) however chooses a model which keeps the

strength of the first three rounds as constant and allows the last round to have a different strength.

Table 6: Summary for round based BT models: NCAA men’s Basketball

Strength in Round df TS p-value neg LL # par AIC AICc

1 2 3 4

Est1 Est2 Est3 Est4 22 33.88 5.04% 928.41 4 1864.83 1865.19
Est1 Est2 Est3a Est3a 23 33.51 7.25% 931.05 3 1868.11 1868.32
Est1a Est1a Est3a Est3a 24 36.39 5.02% 931.74 2 1867.50 1867.60
Est2a Est2a Est2a Est4 24 37.49 3.90% 930.16 2 1864.33 1864.44
Est2a Est2a Est2a H 27 43.65 2.24% 932.81 1 1867.63 1867.67
Est1a Est1a H H 29 105.05 0.00% 964.97 1 1931.94 1931.97
Est1 Est2 H H 28 99.62 0.00% 964.27 2 1932.55 1932.66
Est1 Est2 Est3 H 24 40.53 1.87% 931.06 3 1868.13 1868.34

NOTE: ‘Estj’ denotes strength estimated for round j . ‘Est1a’ is the combined estimate of round 1 and 2. ‘Est3a’
is the combined estimate of round 3 and 4. ‘Est2a’ is the combined estimate of round 1,2 and 3. ‘H’ denotes that
the strength of all teams are taken to be equal.

Strength Estimates: A comparison of the strength estimates for various models for men and

women data is shown in Figure 5. The result shows that only the models with non increasing

strengths estimate fared better in the comparative analysis done earlier in this section. It is also

evident from the plot that the RML estimates flatten the curve where the ML estimates are not

found to be consistent with the rank order. The extraordinary fit of the rank-percentile BT model

based on lognormal distribution is evident from its proximity with the MLE strength. Other rank-
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Figure 5: Strength estimates for various models for NCAA: Men and Women
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percentiles BT models based on from gamma, weibull and asymmetric beta are also found to have

a closer plot to the MLE curve.

Combined data of men and women: A comparative study of all the models for the combined data

of men and women is reported in Table 7. Here the MLE model is found to be the best with a

p-value of 10%. RML also fares well with a p-value of 8%. Though a good fit of RML also

validates the ranking system of NCAA tournament as opposed to men and women differently, the

poor fit of the distribution based rank-percentile BT model is not a surprise as it puts further

constraints on the strength estimates. The strength estimates of all the models are displayed in

Figure 6. Round based models were tried for the rank-percentile BT model based on lognormal

distribution. None of these models provide a substantial improvement in the model fit. Hence

as discussed in Section 3.6, a change point analysis is done to check if the strength estimates of

men and women are significantly different. The (restricted) maximum likelihood estimates and

estimates from the rank-percentile BT models based on asymmetric beta, lognormal, gamma and

weibull distribution are considered for this change point test and the results are summarized in
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Table 8. Invariably in all of the models considered, a low p-value indicates that the null-model

(men and women have same strength estimates) is rejected. Hence it is concluded that a separate

analysis is preferable for men vis-a-vis women.

Table 7: Summary of Results: NCAA Basketball Men’s and Women’s combined

Model d.f. TS p-value neg LL parameters AIC AICc

Straight-rank 29 78.98 1.6E-06 1494.83 0 2989.66 2989.66
Reverse-rank 33 177.43 1.1E-21 1550.28 0 3100.56 3100.56
Pre-decided-strength 31 174.39 6.6E-22 1547.12 0 3094.24 3094.24
MLE using MM 12 18.54 10.02% 1457.76 15 2945.53 2948.19
RML 12 20.10 6.51% 1458.65 15 2947.31 2949.98
Rank-percentile based on
Normal dist. 32 177.05 5.3E-22 1549.68 1 3101.37 3101.39
Triangular dist. 33 339.54 1.4E-52 1658.44 0 3316.89 3316.89
Symmetric Beta dist. 28 136.15 3.3E-16 1524.86 1 3051.73 3051.76
Asymmetric Beta dist. 28 58.80 0.06% 1477.15 2 2958.31 2958.37
Exponential dist. 30 58.25 0.15% 1477.66 1 2957.33 2957.35
Lognormal dist. 27 49.73 0.49% 1472.59 1 2947.19 2947.21
Gamma dist. 29 58.78 0.09% 1477.14 1 2956.28 2956.30
Weibull dist. 28 58.30 0.07% 1476.82 1 2955.65 2955.67
Pareto dist. 28 79.71 7.4E-07 1491.23 1 2984.47 2984.49
Chi-sq dist. 29 58.78 0.09% 1477.14 1 2956.28 2956.30

NOTE: MLE model specification requires 15 parameters to be estimated from the data and hence gives a better fit.
The poor fit for the other models is because of the change in structural form of strength in men vis-a-vis women,
as seen in change point analysis via Table 8.

5 Summary and Conclusion

Summary: MLE and RML models incorporating the rank order in the BT estimate lack model

prudence. RML also fails to provide a strictly monotonic strength. The strict monotonicity
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Table 8: Summary of Results — Change point problem: Men vs Women NCAA

MLE Asymmetric Beta Log-Normal Gamma Weibull

Test Statistic 59.40 34.10 34.24 34.09 36.58
degrees of freedom 15 2 1 1 1
p value 3.20E-07 3.93E-08 4.87E-09 5.27E-09 1.46E-09

NOTE: Rank-percentile BT models based on lognormal distribution is one parameter model. Hence the difference
in parameters of null and alternate model is one (degrees of freedom for the chi squared distribution of the TS).

Figure 6: Strength estimates for various models for Men and Women combined
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restriction and model prudence is addressed by considering the strengths to be percentiles of a

suitably chosen parametric distribution. The proposed models with rank-percentile based strength

from various parametric distributions provide interpretable estimates for tournaments where a prior

ranking is necessary. Besides, the round based modification gives an outline to modify such models

to make it adaptive within the framework of specific tournaments with multiple rounds of games.

The work develops model selection and validation criteria.
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It is seen that the strength estimates from the proposed models satisfactorily explain the win-

loss records from NCAA basketball tournament. The observation validates the ranking procedure

adopted by the NCAA ranking panel. It is also seen that though the rank order remains the

same across various rounds of the tournament, the relative strength of various rank orders evolves

through the rounds. A change point analysis done on the data reveals that there is indeed a

significant difference between the relative strength of various rank orders of men and women.

The scope of the models is not limited to the NCAA context or to that of a standard knockout

tournament. In the context of sports itself, while model validation may not be essential for a valid

ranking, the approach can be explored as a sufficient condition for the validate of a ranking. On

the other hand, if the teams are not ranked (e.g. in the case of a round robin tournament) one

can apply the proposed models using a ranking based on the data. In such a case, a good fit

would indicate a simple explanation of the win-loss records. The latter can be seen through short

illustration of the IPL data.

An illustration through the Indian Premiere League (IPL): The BT model with the various mod-

ifications discussed in this work, including the distribution based rank-percentile models can be

applied to other tournament formats, including round-robin tournaments. Unlike knockout, the

challenge of modeling and statistical inference is less in the round-robin format, as each pair of

teams face off an equal number of times. As an illustration, the results from the Indian Premiere

League (IPL) — a franchise-based cricket tournament that has been very successful and popular

in its six years of existence is considered. In each edition, teams play each other twice in the

round robin format, culminating in the top four teams playing in the knockout format to decide

the winner. Additional complication is encountered because IPL started with eight teams, with

three new teams joining the league in later years while three teams, including two that joined later

on, left. Given below in Table 9 is the win matrix, with (i, j) -th element representing number of

wins of team in i -th row over team in the j -th column.
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Table 9: Win Matrix from Indian Premiere League (IPL)

CSK DC DD KKR KT KXIP MI PWI RCB RR SRH
CSK 0 6 8 8 1 8 6 4 8 8 2
DC 4 0 4 2 1 3 4 3 6 2 0
DD 4 7 0 5 1 5 6 3 5 6 0
KKR 4 7 6 0 0 6 2 4 6 6 1
KT 1 0 1 2 0 0 1 0 0 1 0

KXIP 4 7 7 5 1 0 7 3 7 3 0
MI 9 6 6 10 0 5 0 5 7 7 1
PWI 2 1 2 1 1 3 1 0 0 1 0
RCB 6 4 5 6 2 5 6 5 0 6 1
RR 5 7 6 5 1 8 5 4 5 0 2
SRH 0 0 2 1 0 2 1 2 0 1 0

As noted earlier, there is no ranking of teams in IPL. Hence, to implement the rank-based BT

models, a ranking is introduced on the basis of % of wins of each team. The rank percentile model

based on Lognormal distribution provided an excellent fit to the six-years of IPL result, considering

all teams, with a p-value of 0.99 (Chi-square test statistic 11.45 and d.f.=26-1=25). This is highly

impressive even while taking into account small number of observations. The estimated strengths

of all the teams are reported in the Table 10.

Table 10: Strength of IPL teams: Lognormal Percentile Strength Model

IPL TEAMS
CSK MI SRH RR RCB KXIP KKR DD KT DC PWI

Strength 100 85.05 75.88 69 63.32 58.34 53.75 49.32 44.86 40.02 34.03
NOTE: The estimated strengths are from rank-percentile BT models based on Lognormal distribution.

Alternative Theoretical Treatise: The test statistic, T as developed in Section 3.5 can be alter-

natively framed by replacing Eij with Ẽij where Ẽij = n × π0
ij × Probability[i plays j]. The new

expected win would typically be smaller because of the knockout structure of the tournament. In

practice, it would result into larger clubbing and hence greater information loss, i.e. asymptote

would reach a lot later. The advantage of this approach is in having a deterministic number of
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repetition and hence deterministic degrees of freedom. The development of such a test statistic

and consequent inferences based on it is planned to be taken up in a follow-up study.

Paired comparison: Moving beyond sports tournaments and related work to general paired com-

parison framework, it is known for example that the ranking of consumer items or grading of edibles

is done by marketing practitioners and food testers respectively. The problem of authenticating

the ranking given by such evaluators or judges can be handled using the procedures outlined in

this article. In particular, data from various paired comparisons of the objects ranked by experts

can be collected from consumers in a suitable framework and analyzed using the models described

in this article. Some similar case studies and related theoretical development of the survey designs,

akin to the tournament structures, are planned to be taken up in a follow up work.
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Appendix A Clubbing Algorithm

Algorithm 1: Clubbing Algorithm
input : A matrix M of size t× t with many entries less than 5 and a zero-matrix A of same

size

output: A matrix A of size t× t with almost all non-zero entries greater than 5

1 for i← 1 to t− 1 do

2 columnsum ← 0 ;

3 rowsum ← 0 ;

4 for j ← t to i+ 1 do

5 columnsum ← columnsum +M [i, j] ;

6 rowsum ← rowsum +M [j, i] ;

7 if ( ( rowsum ≥ 5 and columnsum ≥ 5) then

8 A[i, j]← columnsum;

9 A[j, i]← rowsum;

10 columnsum ← 0 ;

11 rowsum ← 0 ;

12 end

13 end

14 end

15 repeat all of the above lines with transpose(A) as the new M
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