
POSTERIOR CONSISTENCY OF BAYESIAN QUANTILE

REGRESSION UNDER A MIS-SPECIFIED LIKELIHOOD

BASED ON ASYMMETRIC LAPLACE DENSITY

By Karthik Sriram∗, R. V. Ramamoorthi∗∗, Pulak Ghosh∗

∗Indian Institute of Management Bangalore, ∗∗Michigan State University

Last revised on May 30, 2011

We provide a theoretical justification for the widely used and yet only empirically verified

approach of using Asymmetric Laplace Density(ALD) in Bayesian Quantile Regression. We

derive sufficient conditions for posterior consistency of the quantile regression parameters even

if the true underlying likelihood is not ALD, by considering both the case of random as well as

non-random covariates. While existing literature on misspecified models address more general

models, our approach of exploiting the specific form of ALD allows for a more direct derivation.

We verify that the conditions so derived are satisfied by a wide range of potential true underlying

probability distributions. We also show that posterior consistency holds even in the case of

improper priors as long as the posterior is well defined. We demonstrate the working of the

method using simulations.
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1. Introduction

Quantile regression has been popular as a simple, robust and distribution free modeling methodology

since the seminal work by Koenker and Basset (1978). It provides a way to model different percentiles

of the distribution of the response as a function of covariates. This makes it an indispensible tool

for analyzing many important practical problems. For example, it can play a crucial role in helping

understand the nature of tail events, which is an important problem in the financial services industry.

If Yi is the dependent variable and Xi are the explanatory variables or covariates, then for a fixed

τ ∈ (0, 1), the quantile regression problem is to solve the following minimization problem over β

Minimizeβ ρτ (Yk −XT
k β)(1.1)

ρτ (u) = u(τ − Iu≤0)(1.2)

It is easy to see that the above minimization problem can be formulated as a maximum likelihood

estimation problem by assuming Yi ∼ ALD(., µτ
i , σ, τ), the Asymmetric Laplace Distribution (ALD),

whose density function is given by,

ALD(y;µτ , σ, τ) =
τ(1 − τ)

σ
exp

[

−
(y − µτ )

σ
(τ − I(y≤µτ ))

]

, for −∞ < y < ∞(1.3)

The parameter µτ happens to be the τ th quantile of the ALD distribution and hence in quantile

regression one formulates the model as µτ
i = XT

i β. ALD has therefore been a powerful tool for

formulating both non-bayesian and bayesian quantile regression problems. This is interesting especially

given the fact the the true underlying distribution in practical problems is almost never ALD. Koenker

and Machado(1999) develop goodness of fit inference processes for quantile regression. They consider

the Asymmetric Laplace Density and the corresponding likelihood ratio based inference for the quantile

regression parameters and show that asymptotics work even if the underlying distribution is not ALD.

Yu and Moyeed(2001) introduce the idea of bayesian methods in quantile regression by casting the

problem as a generalized linear model using ALD for the response. They argue based on empirical

results that even if the underlying distribution is not ALD, the results would be reasonable. This paper

provides a theoretical justification for this phenomenon. We look at the problem where the likelihood
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is specified to be ALD with covariates(as described above), while the true underlying distribution may

be different. We consider the case of random as well as non-random covariates and study posterior

consistency of the parameters under mis-specification.

Posterior consistency of model parameters under mis-specification has been a problem of considerable

interest. Prior work on this topic includes the early work of Berk (1966). Mis-specification under the

parametric set up is investigated by Bunke and Milhaud (1988) and more general set up is considered

by Kleijn and Vanderwaart(2006), Shalizi (2009). While these works address more general models, in

our case, the specific form of the ALD likelihood allows for a more direct derivation. Our approach

utilizes some of the key ideas and thought processes from the works of Shalizi (2009), Amewou-atisso

et al (2003) and Ghosh and Rammoorti(2003).

In what follows, we will first present the main theorem in section 2, followed by a discussion of

examples of kind of distributions that would satisfy the conditions of our theorems in section 3. In

section the result is extended to the case of improper priors. We demonstrate the working of such a

method through simulations in section 5 and then conclude with a discussion in section 6.

2. Theoretical Results

Let {Yi}, i = 1, 2, ...n be n independent observations of a univariate response. Let {Xi}, i = 1, 2, .., n

be p-dimensional covariates, whose components can either be random i.i.d realizations or non-random.

Let P0i denote the true (but unknown) probability distribution of (Yi,Xi). Let τ ∈ (0, 1) be fixed. Our

aim is to model the τ th quantile of the conditional distribution of Yi given Xi, denoted by Qτ (Yi/Xi).

We will consider the most commonly used linear formulation for quantile regression and assume that

the true conditional quantile is given by Qτ (Yi/Xi) = α+XT
i β.

The specified model for the response is given to be Yi ∼ ALD(., µτ
i , σ = 1, τ), where µτ

i = α+XT
i β

and the bayesian specification if completed by putting a prior distribution on the parameters (α, β).

Since the true underlying distribution of Yi may not be ALD, the question we address is whether

the procedure of using ALD is still good enough to ensure posterior consistency for (α, β). More
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precisely, we ask if (α0, β0) is the vector of true parameters and the set U ⊆ ℜ1+p is an open ball

in the (p+1) dimensional euclidean space, such that (α0, β0) ∈ U and Π(α, β) is a prior on the

parameter space, then is it true that the posterior probability of U c under the specified likelihood

converges to zero almost surely, i.e. whether Π (U c/Y ) → 0 a.s. [P ] ? , where P is the product

measure (P01 × P02 × ...× P0n × ...).

Let f(α,β)i(yi) denote the density functions of ALD(., α +XT
i β, σ = 1, τ) at yi. Then the posterior

probability of the set U c under the specified likelihood and prior is given by,

Π (U c/(Y1,X1), (Y2,X2), ..., (Yn,Xn)) =

∫

Uc

∏n
i=1 f(α,β)i(Yi)dΠ(α, β)

∫

Θ

∏n
i=1 f(α,β)i(Yi)dΠ(α, β)

Often, it is beneficial to modify the previous expression by dividing both the numerator and denom-

inator by a suitable function of Y. A natural choice for such a function would be the true underlying

density (as in Shalizi(2009)). Another choice is to divide both the numerator and denominator by

p∗(Yi), which is the density function that minimizes the Kullback-Liebler divergence to the true den-

sity, among the specified family of densities. Berk(1966) allows for a more general choice of such a

function. In our case, we find it useful to divide both the numerator and denominator by f(α0,β0)i(Yi),

i.e. the ALD density with the true parameter values. We will show later that this particular ALD

density function indeed minimizes the Kullback-Leibler divergence with the true underlying density.

Accordingly, we write

(2.1) Π(U c/Y1, Y2, ..., Yn) =

∫

Uc

∏n
i=1

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

dΠ(α, β)

∫

Θ

∏n
i=1

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

dΠ(α, β)
=

I1n
I2n

Our idea will be to show that under certain conditions, for some suitable d0 > 0, end0I1n → 0 a.s.[P ]

and end0I2n → ∞ a.s.[P ]. It is easy to see that the desired posterior consistency would then follow.

To keep the discussion simple, we will look at the case of a single non-random covariate Xi (i.e p=1).

The same approach is easily extendable to accomodate multiple covariates that include both random

and non-random components. In the following subsection, we will derive the result for the more

complicated case when Xi are non-random. In the subsequent section, we will remark on the case of

multiple covariates that may include random components.
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By way of notation, probabilites P ( . ) and expectations E[ . ], will always be with respect to

the true underlying product measure. Π(α, β) will denote the prior distribution for the parameters

(α, β) on the parameter space Θ ⊆ ℜp+1. Also, recall that f(α,β)i(Yi) is the density function of

ALD(., α+βXi, σ = 1, τ) at Yi as given in equation (1.3). Without loss of generality, we consider open

neighbourhoods of the form U = {(α, β1, β2, ..., βp) : |α−α0| < ∆1, |β−β0| < ∆2, ..., |βp−β0p| < ∆p}

around the true parameter values (α0, β01, ..., β0p).

2..1 Posterior consistency in the case of univariate(p=1) non-random covariates

In the discussion that follows, we will often work with the log-ratio of ALD likelihood
(

i.e. log
f(α,β)i

f(α0,β0)i
(Yi)

)

.

The next lemma gives some identities and inequalities involving this ratio that are used through out

the paper.

Lemma 2.1. Let f(α,β)i(Yi) denote the density functions of ALD(., α +XT
i β, σ = 1, τ) at Yi (as in

(1.3)) and let bi = (α− α0) + (β − β0)Xi. Then, the following hold.

(a) log
(

f(α,β) i

f(α0,β0) i

)

(Yi) =











































−bi(1− τ) , if Yi ≤ Min(α+ βXi, α0 + β0Xi)

(Yi − α0 − β0Xi)− bi(1− τ) , if α0 + β0Xi < Yi ≤ α+ βXi

biτ − (Yi − α0 − β0Xi) , if α+ βXi < Yi ≤ α0 + β0Xi

biτ , if Yi ≥ Max(α+ βXi, α0 + β0Xi)

(b)
∣

∣

∣
log
(

f(α0,β0)i

f(α,β) i

)

(Yi)
∣

∣

∣
≤ Max(τ, (1 − τ))(|α − α0|+ |β − β0||Xi|)

(c) log
(

f(α0,β0)i

f(α,β) i

)

(Yi) ≤ |Yi − α0 − β0Xi|

(d) If |Xi| <= M1 then, E
[

log
(

f(α0,β0)i

f(α,β) i

)

(Yi)
]

≤ Max(τ, (1− τ))(|α − α0|+ |β − β0|M1)

(e) If bi > 0, then log
(

f(α,β) i

f(α0,β0) i

)

(Yi) = −bi(1− τ) +Min(Z+
i , bi)

If bi <= 0, then log
(

f(α,β) i

f(α0,β0) i

)

(Yi) = biτ +Min(Z−
i ,−bi)

where Z+
i and Z−

i are positive and negative parts of the random variable Zi = Yi−α0−β0Xi
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We skip the proof of the lemma, which follows by a little algebra. Note that the R.H.S in Lemma 2.1

(d) says that when the covariate is bounded, the log-ratio of the ALD likelihoods can be bounded

by a continuous function in (α, β). This indeed turns out to be a very useful property and hence we

introduce our first assumption.

(A.1) ∃ M1 > 0, such that |Xi| ≤ M1 ∀ i ≥ 1

This is not an unreasonable assumption since Xi are non-random. For example, in a designed ex-

periment for clinical trial, the Xi may be different levels of an administered drug. So, it is indeed

reasonable to expect this. It turns out that if Xi are i.i.d random, we can modify this requirement to

say E|X1| ≤ M1.

We first work with the denominator of the posterior probability (i.e I2n). In our quantile regression

context, we consider Yi’s that are independent but not necessarily i.i.d, since their distribution depends

on the non-random covariate Xi. Moreover, we are dealing with the case of mis-specified likelihood. To

handle this case, we state the following proposition which is analogous to lemma 4.4.1, in Ghosh and

Ramamoorthi(2003) used for proving consistency in a properly specified model under i.i.d assumption.

The proof is omitted as it can be shown along the same lines and does not rely on the specific form of

ALD.

Proposition 2.1. If ∀ δ > 0, Π(Vδ) > 0, , where,

Vδ =






(α, β) ∈ Θ : lim supn→∞

1
n

∑n
i=1 E

[

log
f(α0,β0)i

(Yi)

f(α,β)i(Yi)

]

< δ,
∑∞

i=1

E

[

(

log
f(α0,β0)i

(Yi)

f(α,β)i(Yi)
)

)2
]

i2
< ∞







then ∀ d > 0, endI2n → ∞ a.s [P ]

Note that the condition required for the proposition 2.1 to hold is essentially a condition on the prior

Π(α, β). Therefore, we introduce our next assumption on the prior.

(A.2) Π({(α, β) : |α− α0| < δ1, |β − β0| < δ2}) > 0, ∀δ1 > 0, δ2 > 0

Lemma 2.2. If assumptions A.1 and A.2 hold, then ∀ d > 0, endI2n → ∞ a.s [P ]
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Proof. The idea is to verify that conditions of proposition 2.1 hold. By assumption A.1 and part

(d) of Lemma 2.1 it follows that

lim sup
n→∞

1

n

n
∑

i=1

E

∣

∣

∣

∣

log

(

f(α0,β0)i

f(α,β) i

)

(Yi)

∣

∣

∣

∣

≤ Max(τ, (1 − τ))(|α − α0|+ |β − β0|M1)(2.2)

Since R.H.S of the above inequality is a continuous function in (α, β), for any δ > 0,∃ δ1, δ2, such

that ∀ (α, β) : |α − α0| < δ1, |β − β0| < δ2, lim supn→∞
1
n

∑n
i=1E

∣

∣

∣log
(

f(α0,β0)i

f(α,β) i

)

(Yi)
∣

∣

∣ < δ. Similarly,

it follows that E
[

log
(

f(α0,β0) i

f(α,β) i

)

(Yi)
]2

≤ Max(τ, (1 − τ))E(|α − α0| + |β − β0|M1)
2 < ∞, and hence

∑∞
i=1

E

[

log

(

f(α0,β0) i

f(α,β) i

)

(Yi)

]2

i2
< ∞, ∀(α, β). Now note that {(α, β) : |α − α0| < δ1, |β − β0| < δ2} ⊆ Vδ

and by assumption A.2 Π(Vδ) > 0 ∀ δ > 0. This shows that conditions of proposition 2.1 are satisfied,

thus completing the proof.

It is interesting to note that among the family of ALD densities, f(α,β)i, i.e, the one with α = α0

and β = β0 minimizes the Kullback-leibler divergence with the true likelihood P0i. This is indeed a

consequence of our next lemma.

Lemma 2.3. Let f(α,β) i and p0i be the probability density functions of ALD specification and the

true underlying distribution of Yi respectively, then the following identities and inequalities hold.

(a) E
[

log
(

f(α,β) i

f(α0,β0) i
(Yi)

)]

= E [(Yi − α− βXi)Iα0+β0Xi<Y<α+βXi
]+E [(α + βXi − Yi)Iα+βXi<Yi<α0+β0Xi

]

(b) E
[

log
(

f(α,β) i

f(α0,β0) i

)]

≤ 0

(c) E
[

log
(

p0i
f(α,β) i

(Yi)
)]

≥ E
[

log
(

p0i
f(α0,β0) i

(Yi)
)]

, ∀ (α, β) ∈ Θ.

Further, in (b) and (c), equality is achieved if α = α0 and β = β0

Proof. The proof of (a) just involves a bit of algebra and using the fact that α0 + β0Xi is the τ th

quantile of P (Yi/Xi). (b) follows from (a) by noting that the expressions inside the expectation in

both terms are negative. (c) is an immediate consequence of (b) by writing E
[

log
(

p0i
f(α,β) i

(Yi)
)]

=

E
[

log
(

p0i
f(α0,β0) i

(Yi)
)]

− E
[

log
(

f(α,β) i

f(α0,β0) i
(Yi)

)]
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Now, we consider the numerator of equation (2.1), namely I1n =
∫

Θ

∏n
i=1

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

dΠ(α, β). To

lay out the idea of our approach, it helps to think through a slightly simpler case when Θ ⊆ ℜ2 is

compact. Recall, U = {(α, β) ∈ Θ : |α− α0| < ∆1 and |β − β0| < ∆2}. Then we can write

I1n =

∫

Uc

n
∏

i=1

f(α,β)i(Yi)

f(α0,β0)i(Yi)
dΠ(α, β) =

∫

Uc∩Θ
e

∑n
i=1 log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)

dΠ(α, β)

We would like to get some d0 > 0 such that end0 .I1n → 0.

(i) Firstly, although the exponent in the integrand is not negative in general, we know from part

(b) of Lemma 2.2 that E
[

∑n
i=1 log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)]

≤ 0. Therefore, we would like to write the

exponent in the integrand in terms of this expectation. A natural way to tackle this is via

uniform SLLN over compact sets. Theorem 1.3.3 in Ghosh and Ramamoorti (2003) provides

uniform strong law in the case when Yi are i.i.d. However, in our case, we have Yi independent

but not identical. To our knowledge, this case has not recieved much attention in literature

and hence we prove a version in the appendix (proposition A.1) and derive the specific result

required for our problem in lemma 2.4.

(ii) Then our problem becomes that of showing
∫

Uc∩Θ e
E

[

log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)]

dΠ(α, β) decays to 0 at an

exponential rate. We will address this in lemma 2.5.

(iii) Finally, when Θ is not necessarily compact, a natural idea would be to split the parameter space

into two parts as Θ = G ∪ Gc, where G is a compact set such that the integral over Gc decays

in a exponential manner.This will be covered in lemma 2.6.

We state these lemmas below. We defer the proofs to the appendix.

Lemma 2.4. Let G ⊂ Θ be compact. If assumption A.1 holds, then

sup(α,β)∈ G

∣

∣

∣

1
n

∑n
i=1

(

log
(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)

− E
[

log
(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)])∣

∣

∣→ 0 a.s [P ]

Since the objective of the model is to estimate the τ th quantile, it is reasonable to assume that the

quantile is unique. Otherwise, the linear function which we are trying to estimate (viz. α+βXi) will not
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be estimable. Another way to say this would be that for any ∆ > 0, P (0 < Yi − α0 − β0Xi < ∆) 6= 0.

Similarly if the Xi’s are all constant, then again the model will not be estimable. Therefore, it

is reasonable to require that {Xi, for i ≥ 1} take on atleast two distinct values each infinitely

many times. Without loss of generality (by adjusting the location of Xi’s) this would mean that

∃ ǫ0 > 0 such that lim inf 1
n

∑n
i=1 IXi>ǫ0 > 0 and lim inf 1

n

∑n
i=1 IXi<−ǫ0 > 0. Such a condition is

indeed used by Amewou-atisso et al (2003). In our case, it so happens that we need the following

assumption that is a combination of the two.

(A.3) ∃ ǫ0 > 0 such that, for any ∆ > 0, the following conditions (i) to (iv) hold

(i) lim inf 1
n

∑n
i=1 P (0 < Yi − α0 − β0Xi < ∆) IXi>ǫ0 > 0

(ii) lim inf 1
n

∑n
i=1 P (0 < Yi − α0 − β0Xi < ∆) IXi<−ǫ0 > 0

(iii) lim inf 1
n

∑n
i=1 P (−∆ < Yi − α0 − β0Xi < 0) IXi>ǫ0 > 0

(iv) lim inf 1
n

∑n
i=1 P (−∆ < Yi − α0 − β0Xi < 0) IXi<−ǫ0 > 0

Note that this assumption in some sense is saying that the uniqueness of quantile is preserved in the

limit. If the true model is a location shift model (i.e where Yi − α0 − β0Xi are i.i.d then this just

reduces to saying lim inf 1
n

∑n
i=1 IXi>ǫ0 > 0 and lim inf 1

n

∑n
i=1 IXi<−ǫ0 > 0, which is similar to the

condition specified in Amewou-Atisso et al (2003). This turns out to be the key assumption that helps

prove the next two lemmas. Also, we find it more convenient to break up the set U c as
⋃8

i=1 Wi,

where

U = {(α, β) : |α− α0| < ∆1 and |β − β0| < ∆2}

W1 = {(α, β) : α− α0 ≥ ∆1, β ≥ β0}, W2 = {(α, β) : α− α0 ≥ ∆1, β < β0}

W3 = {(α, β) : α− α0 < −∆1, β ≥ β0}, W4 = {(α, β) : α− α0 < −∆1, β < β0}

W5 = {(α, β) : α ≥ α0, β − β0 ≥ ∆2}, W6 = {(α, β) : α < α0, β − β0 ≥ ∆2}

W7 = {(α, β) : α ≥ α0, β − β0 < −∆2}, W8 = {(α, β) : α < α0, β − β0 < −∆2}
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Lemma 2.5. If assumption A.3 holds for some ǫ0 > 0, then for j = 1, 2, .., 8, ∃ N∗
j and constants

Kj > 0 (depending on ∆1, ∆2, ǫ0), such that ∀ n ≥ N∗
j ,

∫

Wj
e

∑n
i=1 E

[

log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)]

dΠ(α, β) ≤ e−nKj

As mentioned earlier, for the case when the parameter space Θ is compact, Lemma 2.4 and Lemma 2.5

would be sufficient to prove the desired convergence result for I1n. In order to handle the case when

the parameter space is not necessarily compact, the idea would be to find a compact set G, such that

the conclusions of Lemma 2.4 still holds and the integral over Gc declines exponentially. To achieve

this, we introduce the final two assumptions, whose need will become clear in the proofs.

(A.4) The prior Π on Θ is proper

The assumption on propriety of prior is in fact not needed. We will see in section 4 that as long as

the posterior distribution is well defined, the results of this paper will hold.

(A.5)
∑∞

i=1

E[|Zi|2]
i2

< ∞ and S1 = lim supm→∞
1
m

∑m
i=1E [|Zi|] < ∞, where Zi = Yi − α0 − β0Xi

The last assumption is for us to be able to apply Kolmogorov’s SLLN for non-iid random variables

{Zn}.

Lemma 2.6. If assumptions A.1, A.4 and A.5 hold, then for j = 1, 2, .., 8, ∃ a compact set Gj ⊂ Wj

and integer N∗∗
j (ω) such that

∫

Gc
j∩Wj

e

∑n
i=1 log

f(α,β)i(Yi)

f(α0,β0)i
(Yi)dΠ(α, β) ≤ e−bjn for some bj > 0, ∀ n ≥

N∗∗
j (ω)

The proof of this lemma again exploits the specific form of ALD to construct the set G. The proof

is provided in the appendix. With this, we come to the main theorem of this paper.

Theorem 2.1. Let {Yi}, i = 1, 2, ...n be n independent observations of a univariate response and let

{Xi}, i = 1, 2, .., n be 1-dimensional non-random covariates. Let P0i denote the true (but unknown)

probability distribution of (Yi,Xi), with the true τ th conditional quantile given by Qτ (Yi/Xi) = α0 +
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XT
i β0. Suppose however that the specified model for Yi is ALD(., µτ

i , σ = 1, τ), where µτ
i = α+XT

i β,

which is used to estimate (α, β). Let U = {(α, β) : |α−α0| < ∆1 and |β−β0| < ∆2} for any arbitrary

∆1 > 0,∆2 > 0. Then, under assumptions A.1 to A.5, Π(U c/Y1, Y2, .., Yn) → 0 a.s. [P ]

Proof. As in equation (2.1) we write Π(U c/Y1, Y2, .., Yn) = I1n
I2n

. Firstly, by Lemma 2.2, we have

∀ d > 0, endI2n → ∞ a.s [P ]. Therefore, it is enough to show that ∃ d0 > 0 such that end0I1n →

0 a.s [P ]. Because then we would have Π(U c/Y1, Y2, .., Yn) =
I1n
I2n

= end0I1n
end0I2n

→ 0 a.s. [P ]. Note that

I1n =
∑8

j=1

∫

Wj

∏n
i=1

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

dΠ(α, β). Let us denote the jth term by Ij1n. Let Gj , for j = 1, 2.., 8

be the compact set as given by Lemma 2.6. Then,

Ij1n =

∫

Wj

⋂

Gj

e

∑n
i=1 log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)

dΠ(α, β) +

∫

Wj

⋂

Gc
j

e

∑n
i=1 log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)

dΠ(α, β)

Let ηj > 0. It’s exact value will be determined later. By Lemma 2.4,
∑n

i=1 log
(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)

<
∑n

i=1 E
[

log
(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)]

+ n× ηj ∀ n ≥ some k0(ω),∀ (α, β) ∈ Gj ∩Wj

It then follows by Lemma 2.5 that ∃ N∗
j > k0(ω) and Kj > 0 such that ∀ n ≥ N∗

j

∫

Wj

⋂

Gj

e

∑n
i=1 log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)

dΠ(α, β)

≤

∫

Wj

⋂

Gj

e

∑n
i=1 E

[

log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)]

+n×ηj
dΠ(α, β)

≤ e−nKj × en×ηj

≤ e−n
Kj
2

(by choosing ηj =
Kj

2
)

Also, by Lemma 2.6, the choice of the set Gj is such that, ∀ n ≥ N∗∗
j ,

∫

Wj

⋂

Gc
j

e

∑n
i=1 log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)

dΠ(α, β)≤e−nbj

The inequalities for the first and second term together imply that ∀ n ≥ Nj = max(N∗
j (ω), N

∗∗
j (ω))

Ij1n ≤ e−n
Kj

2 + e−nbj

≤ 2× e−2ndj

11



where, 2dj = Min(bj ,
Kj

2 ). It follows then that

I1n =
∑8

j=1 I
j
1n ≤ 16 × e−2nd0 ∀ n ≥ Max(N1, ..., N8), where d0 = Min(d1, d2, ..., d8). This in turn

implies that for end0 × I1n → 0 a.s. [P ].
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2..2 Generalization to the case of multiple covariates

Generalizing the above results to accomodate multiple covariates that include random components is

actually quite easy. We will denote the p-dimensional covariate for the ith observation by (Xi1,Xi2, ...,Xip).

Correspondingly, we will denote the vector of β by (β1, ..., βp). The prior Π will understandably

be on the parameters (α, β1, ..., βp). The true (unknown) value of the parameter is denoted by

(α0, β01, ..., β0p). It is easy to see that the analogous result of Theroem 1 will hold with the following

analogous assumptions.

(A∗.1) ∃M1 > 0, such that ∀ i ≥ 1, |Xij | ≤ M1 for covariates X.j that are non-random and E|Xij | ≤ M1

for covariates X.j that are random and i.i.d across observations i=1,2,3...,n.

(A∗.2) Π({(α, β1, ..., βp) : |α − α0| < δ1, |β1 − β01| < δ2, ..., |βp − β0p| < δp+1}) > 0, ∀δ1 > 0, δ2 >

0, ..., δp+1 > 0

(A∗.3) ∃ ǫ0 > 0 such that, for any ∆ > 0, the following conditions (i) to (iv) hold

(i) lim inf 1
n

∑n
i=1 E

[

I{0<Yi−α0−XT
i β0<∆} × IXij>ǫ0

]

> 0, ∀ j = 1, 2, ..., p

(ii) lim inf 1
n

∑n
i=1 E

[

I{0<Yi−α0−XT
i β0<∆} × IXij<−ǫ0

]

> 0, ∀ j = 1, 2, ..., p

(iii) lim inf 1
n

∑n
i=1 E

[

I{−∆<Yi−α0−XT
i β0<0} × IXij>ǫ0

]

> 0, ∀ j = 1, 2, ..., p

(iv) lim inf 1
n

∑n
i=1 E

[

I{−∆<Yi−α0−XT
i β0<0} × IXij<−ǫ0

]

> 0, ∀ j = 1, 2, ..., p

(A∗.4) The prior Π on Θ is proper

(A∗.5)
∑∞

i=1

E[|Zi|
2]

i2
< ∞ and S1 = lim supm→∞

1
m

∑m
i=1E [|Zi|] < ∞, where Zi = Yi − α0 −XT

i β0

13



3. Examples

In this section, we will demonstrate that bayesian analysis carried out with ALD will work for a wide

range of possiblities for the true underlying likelihood. Basically, we will analyze the workings of

assumptions A∗.3, and A∗.5. The other assumptions are either on the prior or the covariates, which

we will assume to hold for the purpose of this discussion. It is worth noting that these assumptions are

typically satisfied if the probabilities and expectations involved turn out to be bounded functions of

the non random covariates. Also, if they happen to be continuous functions of non-random covariates

then by the boundedness assumption A∗.1, one can argue the validity of the required assumptions.

3..1 Example 1: Location Models

Consider the case when conditional on Xi, Yi = α0 + XT
i1β10 + XT

i2β20 + ei where the error terms

ei, for i = 1, 2, ..., n’s are i.i.d from true unknown P0 (with density function p0 w.r.t lebesgue measure),

with it’s τ th quantile at 0. For clarity we split the covariate into two parts with Xi1 representing the

random part that is i.i.d for i=1,2,...n and Xi2 the nonrandom part. Note that Zi = Yi−α0−XT
i1β10−

XT
i2β20 = ei are i.i.d. Now note the following facts

(a) Assumption A∗.3 will be satified if P (0 < Z1 < ∆) > 0, ∀ ∆ > 0 and if ∃ ǫ0 > 0 such that

lim inf 1
n

∑n
i=1 IXij<−ǫ0 > 0 and lim inf 1

n

∑n
i=1 IXij>ǫ0 > 0, for non random covariates X.j ,

and P (X1j > ǫ0) > 0 and P (X1j < −ǫ0) > 0 for random covariates. Latter is a condition on

the covariates. The former condition is satisfied by any distribution which is monotonic. in

particular, normal distribution with location shifted so as to make τ th quantile zero or even

mixtures of such distributions would satisfy this condition. Similarly, one can consider location

shifted gamma, beta etc

(b) A∗.5 is satisfied if Zi has finite variance. e.g location shifted normal, gamma, beta

Proposition 3.1. Suppose the true model for response conditional on Xi is given by Yi = α0 +

XT
1iβ10 +XT

2iβ20 + ei where the error terms ei, for i = 1, 2, ..., n’s are i.i.d from unknown distribution

14



P0 (with density function p0 w.r.t lebesgue measure), with it’s τ th quantile at 0. Suppose that along

with A∗.1, A∗.2, A∗.4, the following conditions hold

(i) P (0 < Z1 < ∆) > 0, ∀ ∆ > 0 and ∃ ǫ0 > 0 such that lim inf 1
n

∑n
i=1 IXij<−ǫ0 > 0 and

lim inf 1
n

∑n
i=1 IXij>ǫ0 > 0, for non random covariates X.j, and P (X1j > ǫ0) > 0 and P (X1j <

−ǫ0) > 0 for random covariates

(ii) The error distribution P0 has finite variance

Then posterior consistency will hold for the quantile regression parameters estimated using ALD for

the response.

In particular, when p0 is normal, beta or a gamma distribution (with shape parameter≥1) then such

a result indeed holds.

3..2 Example 2: Scale Models

An important feature of our result is that it can cover mis-specifications other than location models.

To demonstrate this let us consider the case where the density function of Yi conditional on Xi is given

by p0

(

y µτ
0

l(Xi)

)

×
y µτ

0
l(Xi)

, where p0 is a probability density function on (0,∞) with τ th quantile=µτ
0 and

l(Xi) = α0+XT
i1β10+XT

i2β20, where X.1 and X.2 denote vectors of random and non-random covariates.

Ofcourse, we assume that the covariates Xi’s are such that l(Xi) > 0. Note that this means that the

τ th quantile of Yi, given Xi is l(Xi) = α0 + XT
i1β10 + XT

i2β20. A gamma density would be a special

case of such a model. Again, we would like to study the working of the asumptions A∗.3 and A∗.5.

We will investigate assumption A∗.3 by considering one of the four sub conditions, since oth-

ers would be similar. E
[

I0<Yi−l(Xi)<∆ × IXij>ǫ0

]

= E
[

P0

(

µτ
0 < U <

∆µτ
0

l(Xi)
+ µτ

0/Xi

)

× IXij>ǫ0

]

=

E
[(

Gp

(

∆µτ
0

l(Xi)
+ µτ

0

)

−Gp (µ
τ
0)
)

× IXij>ǫ0

]

, where U ∼ Gp is the distribution function of p0 and is

independent of Xi. Again, the expectation in the last expresion is over the random covariates X1i,

thus resulting in a function of non-random covariates Xi2. Since Gp is a continuous function (because

it has a density w.r.t lebesge measure),
(

Gp

(

∆µτ
0

l(Xi)
+ µτ

0

)

−Gp (µ
τ
0)
)

×IXij>ǫ0 is a continuous function
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in Xi on the set Xij > ǫ0. So, (noting that Gp ≤ 1 and applying DCT) the expectation will result in

a continuous function of the non-random covariates. If the distribution function Gp is also a strictly

increasing continuous function (which is certainly true if for example p0 is the gamma density) then

this will result in a strictly positive continuous function of nonrandom covariates. Since the non-

random covariates are bounded, by compactness and continuity it follows that this expectation will be

bounded away from zero for all possible values of the non-random covariate. Further, if ∃ ǫ0 > 0 such

that lim inf 1
n

∑n
i=1 IXij<−ǫ0 > 0 and lim inf 1

n

∑n
i=1 IXij>ǫ0 > 0, for non random covariates X.j , and

P (X1j > ǫ0) > 0 and P (X1j < −ǫ0) > 0 for random covariates then assumption A∗.3 will be satisfied.

In particular, this is satisfied for P0 having a gamma distribution.

For assumption A∗.5, we just note that E
[

Z2
i

]

= E
[

(U − µτ
0)

2 × (l(Xi))
2
]

= E
[

(U − µτ
0)

2
]

×

E
[

(l(Xi))
2
]

, where U ∼ P0. As long as the second moment of P0 exists (which is satisfied by gamma)

and second moments of the random covariates exist, then this expression is a bounded function in the

non-random covariates.

Proposition 3.2. Suppose the density function of Yi conditional on Xi is given by p0

(

y µτ
0

l(Xi)

)

×
y µτ

0
l(Xi)

,

where p0 is a probability density function on (0,∞) with τ th quantile=µτ
0 and l(Xi) = α0 +XT

i1β10 +

XT
i2β20. Suppose condition A∗.1, A∗.2, A∗.4 hold. Suppose further the following conditions hold

(i) Each random covariate has a finite second moment

(iii) The distribution function of the density p0 is a strictly increasing continuous function with finite

second moment.

(iv) ∃ ǫ0 > 0 such that lim inf 1
n

∑n
i=1 IXij<−ǫ0 > 0 and lim inf 1

n

∑n
i=1 IXij>ǫ0 > 0, for non random

covariates X.j, and P (X1j > ǫ0) > 0 and P (X1j < −ǫ0) > 0

Then posterior consistency will hold for the quantile regression parameters estimated using ALD.

In particular if p0 is a gamma density with shape parameter, the covariates are bounded and ∃ ǫ0 > 0

such that lim inf 1
n

∑n
i=1 IXij<−ǫ0 > 0 and lim inf 1

n

∑n
i=1 IXij>ǫ0 > 0, for non random covariates X.j ,

and P (X1j > ǫ0) > 0 and P (X1j < −ǫ0) > 0 then posterior consistency will hold for the quantile

regression model that is based on a mis-specified ALD model
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3..3 Example 3: A Normal location scale model

Let Yi ∼ N(l(Xi) − ρτφ(Xi), φ
2(Xi)), where l(Xi) = α + β1Xi1 + β2Xi2 and φ(Xi) where ρτ is the

τ th quantile of standard normal distribution. Let Xi1 are random and Xi2 are non-random covariates.

Clearly, the τ th quantile of Yi given Xi is l(Xi).

For A∗.3, we again argue with one of the four subconditions since the argument for the others

is similar. E
[

I0<Yi−l(Xi)<∆ × IXij>ǫ0

]

= E
[(

Φ
(

∆
φ(Xi)

+ ρτ

)

− Φ (ρτ )
)

IXij>ǫ0

]

, where Φ() is the

standard normal distribution function. Clearly, if φ(Xi) is a continuous function in Xi then by DCT

this is a continuous function of the non-random covariates on the set Xij > ǫ0. If ∃ ǫ0 > 0 such

that lim inf 1
n

∑n
i=1 IXij<−ǫ0 > 0 and lim inf 1

n

∑n
i=1 IXij>ǫ0 > 0, for non random covariates X.j , and

P (X1j > ǫ0) > 0 and P (X1j < −ǫ0) > 0, then condition A∗.4 will be satisfied.

To check A∗.5, observe that E
[

Z2
i

]

= E
[

(S + ρτ )
2 φ2(Xi)

]

= E
[

(S + ρτ )
2
]

E
[

φ2(Xi)
]

. Therefore

if E
[

φ2(Xi)
]

is a bounded function of the non-random covariates then the required assumption will

be satisfied.

4. Extending the result for improper priors

We can indeed relax the assumption on the propriety of prior (A.4) as long as the posterior is well

defined. Our argument is in the lines of Choi and Ramamoorthi(2003). If Π(./Y1) is proper, then we

could just apply Theorem 2.1 with Π(./Y1) as the prior in place of Π. However, we also need to make

sure that condition A.2 is satisfied by Π(./Y1) in place of Π. The following proposition ensures that

the required condition is indeed satisfied. This result is particularly interesting in view of theorem 1

of Yu and Moyeed(2001) where it is shown that the posterior based on ALD is always well defined

for a flat prior(i.e. Π(.) ∝ 1). Therefore, the following proposition would imply in particular that

Theorem 2.1 would hold when the prior Π is flat.

We will state the result for the case of a single covariate. The same argument works for the multiple

covariates

Proposition 4.1. Let Y1 be univariate response and X1 be 1-dimensional non-random covariate.
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Let the specified model for Y1 be ALD(., µτ
1 , σ = 1, τ), where µτ

1 = α + βX1. Let P01 be the true (but

unknown) probability distribution of Y1, with the true τ th conditional quantile given by Qτ (Y1/X1) =

α0 + β0X1. Let Π be a prior on the parameter space Θ such that 0 <
∫

Θ f(α,β)1(Y1)dΠ(α, β) <

∞ a.e.[P01]. If E ⊂ Θ is such that Π(E) > 0, then Π(E/Y1) > 0 a.e.[P01]

Proof. Firstly, ∃ Ω1 such that P01(Ω1) = 1 and 0 <
∫

Θ f(α,β)1(Y1(ω))dΠ(α, β) < ∞, ∀ ω ∈ Ω1.

We know that,

Π(E/Y1(ω)) =

∫

E
f(α,β)1(Y1(ω))dΠ(α, β)

∫

Θ f(α,β)1(Y1(ω))dΠ(α, β)

By nature of the ALD density function (equation (1.3)) f(α,β)1(y) > 0, ∀ y ∈ ℜ, ∀ (α, β) . Therefore,

since Π(E) > 0, we have,
∫

E
f(α,β)1(Y1(ω))dΠ(α, β) > 0 and hence Π(E/Y1) > 0,∀ ω ∈ Ω1.

5. Simulation

We empirically verify the results of this paper by simulating from four different models and checking

whether ALD based quantile regression indeed leads to reasonable results. We include two covariates,

X1,X2 simulated from a truncated(between 1 and 1000) normal distribution with mean 3 and variance

1. The other variable is a 0-1 values variable simulated from bernoulli distribution with mean 0.3.

For each model, conditional on Xi the τ = 75th percentile is given by α0 + β01X1 + β02X2 where

(α0, β01, β02) = (1, 2, 3). For the bayesian estimation, a normal prior with mean =0 and variance=100

is used for each of the quantile regression coefficients. This kind of a weakly informative prior is

commonly used in practice. The four models conditioned on X1,X2 can be described as follows

1. Location shifted normal : Y ∼ N(α0 + β01X1 + β02X2 − ρτ , 1) where ρτ = ρ.75 is the 75th

percentile of standard normal distribution.

2. Location shifted gamma : Y = α0 + β01X1 + β02X2 − ρτ + e, where e ∼ Gamma(scale =

1, shape = 1), ρτ is the τ th quantile of Gamma(scale = 1, shape = 1)

3. Scaled gamma : Y ∼ Gamma(scale = 1
α0+β01X1+β02X2

, shape = 2)
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4. Location shifted and scaled normal : Y ∼ N(α0 + β01X1 + β02X2 − ρτ |α0 + β01X1 +

β02X2|, |α0 + β01X1 + β02X2|
2)

Bayesian estimation of the ALD model with the above mentioned prior can be done by formulating

a gibbs sampling algorithm.To facilitate a simple formulation of the MCMC scheme, we use the

representation of ALD as a scaled mixture of normals in the lines of Yue and Rue(2011). Figure 1

shows the plot of the 2.5th percentiles, mean and the 97.5th percentiles of the posterior distribution of

the intercept term, as estimated using the MCMC samples. In order to get a feel for the convergence

of the estimates to the true parameter value, the estimation is done for different data sizes starting

from as small as 100 data points to 25000 data points. For each case, the estimation is based on 1000

MCMC simulations after the burnin period. For smaller data sizes, as we should expect, we see that

the distance between the extreme percentiles is larger. However, we can clearly see that as the data

size increases the distance between the extreme percentiles narrrow down towards the true parameter

value. Similarly, figure 2 and 3 show the plots for the coefficient of X1 and X2 respectively.

6. Conclusion

The main contribution of this paper has been to provide a mathematical justification using Assymetric

Laplace Distribution(ALD) for bayesian quantile regression, even if the true underlying distribution

may not be ALD. The method is justfied under some reasonable conditions on the covariates and

the underlying true distribution. This is significant given the fact that this approach has been used

extensively since the work of Yu and Moyeed (2001), but has only been verified empirically in the

past without a thorough mathematical investigation. We would like to emphasize the fact that one of

the main reasons why this approach works is due to the nice property of ALD (Lemma 2.3) that the

Kullback-leibler divergence happens to get minimized at the true regression parameter values. This

is not in general true for any distribution. For example, if instead of ALD, we use a normal density

function whose location is adjusted so that the τ th quantile is α0 + XTβ0, this condition is some-

times violated depending on the true underlying distribution. In fact, we empirically verified(results

not shown) that using a location adjusted normal instead of ALD works when the true underlying
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Figure 1: Bayesian estimation of intercept term
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Figure 2: Bayesian estimation of co-efficient of X1
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Figure 3:Bayesian estimation of co-efficient of X2
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distribution is a location shifted normal or location shifted gamma but breaks down when the true

underlying distribution is more complicated (such as a scaled gamma or even a normal where the

location and scale depend on the covariates). It may be worth investigating to see if the results can

be generalized to encompass other potential ”convenient” distributions apart from ALD for carrying

out bayesian quantile regression.

In this paper, we focused on the case where the quantile of the response is modeled as a linear

function in covariates. It is easy to see that the same result would apply to the case when we choose

to use non-linear transformations of the covariates as long as the transformed covariates satisfy the

conditions of the theorem. For instance, if the model is formulated as being linear in finitely many

spline basis functions, all we would need the basis elements (taken as covariates) satisfy the conditions

of the theorem.

Suppose we use a more general non-parametric formulation where the quantile is modeled as φ(Xi),

by putting a prior on class of functions {φ}. In this case, it is interesting to note that the conclusion

of Lemma 2.2 (which corresponds to the required result for the denominator I2n of (2.1)) still holds as

long as the prior puts positive probability on kullback-liebler neighborhoods of the form(Vδ. However,

the analogous results for the numerator are not as straight forward and will depend on the specific

choice of prior chosen on φ. However, it is still worth noting that whatever be the prior chosen, as

long as the conclusions of lemma 2.4, 2.5 and 2.6 hold then the result will hold for the non-parametric

formulation as well. One may argue similarly for a semi-parametric formulation also.

We belive that the result of this paper will hold for the case of longitudinal data where the number

of subjects are fixed but the number of observations increase with time. This is because the result

can be applied to each subject separately. It may be interesting to extend these results to the case of

longitudinal data where the number of subjects and time are both changing.

Finally, we would like to remark on the scale parameter σ of the ALD density in (1.3). In this paper

we fixed σ at 1. It is easy to see that the same arguments go through if we fix a different value for

σ = σ0. We found empirically (results not shown) that a careful choice of this scale parameter can

drastically improve the rate of convergence to the true parameter values. For instance if the support
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of the response Y is known to be between 0 and 1, then one can choose σ0 so that the essential support

of ALD to a large extent lies in [0, 1] versus just using σ = 1 and this can drastically improve the

convergence to the true parameter value. This observation is particularly interesting because the scale

parameter almost plays no role in the frequentist analysis using ALD but seems to become useful for

a bayesian analysis. Related to this, we also observe empirically that posterior consistency holds even

in the case where we do not fix σ but put a prior on this parameter independent of the prior on (α, β).

We continue to investigate these empirical observations to gain some theoretical insights.
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APPENDIX

Proposition A.1. Let Yi ∼ P0i, i = 1, 2, ..., be a sequence of independent random variables and P

denote the corresponding product measure. Let

(i) Θ be a compact parameter space

(ii) Ti(θ, Yi) be measurable and bounded i.e. ∃ M > 0 such that |Ti(θ, y)| ≤ M a.s [P ], ∀ θ ∈

Θ and ∀ y

(iii) For any θ0 ∈ Θ,

limδ→0 supn≥1E
[

1
n

∑n
i=1 sup{θ:|θ−θ0|<δ}|Ti(θ, Yi)− E [Ti(θ, Yi)]− Ti(θ0, Yi) + E [Ti(θ0, Yi)] |

]

= 0.

Then, limn→∞ supθ∈Θ
∣

∣

1
n

∑n
i=1 Ti(θ, Yi)−

1
n

∑n
i=1 E [Ti(θ, Yi)]

∣

∣ = 0 a.s.[P ]

Proof. Let ǫ > 0 be arbitrary. By conditions (i) and (iii) ∃ θ1, .., θk and δ1, ..., δk such that

supn≥1E
[

1
n

∑n
i=1 sup{θ:|θ−θj|<δj}|Ti(θ, Yi)− E [Ti(θ, Yi)]− Ti(θj, Yi) + E [Ti(θj , Yi)] |

]

< ǫ and
⋃k

j=1Bj =

Θ, where Bj = {θ ∈ Θ : |θ − θj| < δj}, for j = 1, 2, ..., k

Let Zij = sup{θ:|θ−θj|<δj}|Ti(θ, Yi) − E [Ti(θ, Yi)] − Ti(θj , Yi) + E [Ti(θj , Yi)] |. By condition (ii), Ti

are bounded and so are Zij (in fact by 4M). Therefore, we can apply Kolmogorov’s strong law to Ti

as well as Zij, for i = 1, 2, 3, ..., n.... So, for each j, we would have 1
n

∑n
i=1(Zij −E [Zij ]) → 0 a.s.[P ]

and 1
n

∑n
i=1 Ti(θj, Yi) −

1
n

∑n
i=1E [Ti(θj , Yi)] → 0 a.s.[P ] .It follows that ∃ n0 such that ∀ j =

1, 2, ..., k and n ≥ n0, |
1
n

∑n
i=1 Ti(θj , Yi)−

1
n

∑n
i=1 E [Ti(θj, Yi)] | < ǫ and | 1

n

∑n
i=1(Zij −E [Zij ])| < ǫ)
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Now, let θ ∈ Θ, then ∃ j such that θ ∈ Bj. So,

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ti(θ, Yi)−
1

n

n
∑

i=1

E [Ti(θ, Yi)]

∣

∣

∣

∣

∣

= sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Ti(θ, Yi)− E [Ti(θ, Yi)]− Ti(θj , Yi) +E [Ti(θj , Yi)]) +
1

n

n
∑

i=1

(Ti(θj , Yi)−E [Ti(θj , Yi)])

∣

∣

∣

∣

∣

≤ sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Ti(θ, Yi)− E [Ti(θ, Yi)]− Ti(θj , Yi) +E [Ti(θj , Yi)])

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Ti(θj, Yi)− E [Ti(θj , Yi)])

∣

∣

∣

∣

∣

≤
1

n

n
∑

i=1

sup
{θ:|θ−θj|<δj}

|(Ti(θ, Yi)− E [Ti(θ, Yi)]− Ti(θj , Yi)E [Ti(θj, Yi)])|

+

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Ti(θj, Yi)− E [Ti(θj , Yi)])

∣

∣

∣

∣

∣

≤
1

n

n
∑

i=1

Zij +

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Ti(θj , Yi)− E [Ti(θj, Yi)])

∣

∣

∣

∣

∣

≤
1

n

n
∑

i=1

E [Zij] + ǫ+

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Ti(θj, Yi)− E [Ti(θj, Yi)])

∣

∣

∣

∣

∣

, ∀n ≥ n0

≤ sup
m≥1

1

m

m
∑

i=1

E [Zij] + ǫ+

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Ti(θj, Yi)− E [Ti(θj, Yi)])

∣

∣

∣

∣

∣

, ∀n ≥ n0

≤ ǫ+ ǫ+ ǫ = 3ǫ, ∀ n ≥ n0

Proof of Lemma 2.4. We will verify that conditions of Proposition A.1 are satisfied. Take θ =

(α, β), Ti(θ, Yi) = log
(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)

. Firstly, condition (i) of Proposition A.1 has already been assumed

and hence by compactness, ∃ R > 0, such that ∀ (α, β) ∈ Θ, |α− α0| ≤ R and|β − β0| ≤ R

From part (d) of Lemma 2.1, we have |Ti(θ, Yi)| ≤≤ Max(τ, 1 − τ)(1 +M1) ∗ R which means that

condition (ii) of Proposition A.1 holds.

To see condition (iii) of Proposition A.1 holds, we again use part (d) of Lemma 2.1 and observe that

26



for θ0 = (α
′

, β
′

)

sup
n≥1

E

[

1

n

n
∑

i=1

sup{θ:|θ−θ0|<δ}|Ti(θ, Yi)− E [Ti(θ, Yi)]− Ti(θ0, Yi) + E [Ti(θ0, Yi)] |

]

= sup
n≥1

E

[

1

n

n
∑

i=1

sup{(α,β):|(α′
,β

′ )−(α′
,β

′)|<δ}

∣

∣

∣

∣

∣

log

(

f(α,β)i(Yi)

f(α′
,β

′)i(Yi)

)

− E

[

log

(

f(α,β)i(Yi)

f(α′
,β

′)i(Yi)

)]∣

∣

∣

∣

∣

]

≤ sup
n≥1

1

n

n
∑

i=1

sup{(α,β):|(α,β)−(α′
,β

′)|<δ}Max(τ, 1− τ)
[

|α− α
′

|+ |β − β
′

|M1

]

≤ Max(τ, 1− τ)(1 +M1)δ

Clearly, R.H.S of the last inequality goes to zero as δ goes to zero.

Proof of Lemma 2.5. We will prove the result for the set W1. The argument is similar for Wj for

j=2,...,8. Suppose (α, β) ∈ W1. For any Xi > ǫ0, we have (α−α0) + (β − β0)Xi > ∆1. Using part (a)

of Lemma 2.3, we have

E

[

log

(

f(α,β) i

f(α0,β0) i

(Yi)

)]

= E [(Yi − α− βXi)Iα0+β0Xi<Yi<α+βXi
]

≤ E [(Yi − α− βXi)Iα0+β0Xi<Yi<α+βXi
× IXi>ǫ0 ]

≤ E

[

(α0 + β0Xi +
∆1

2
− α− βXi)Iα0+β0Xi<Yi<α0+β0Xi+

∆1
2

× IXi>ǫ0

]

≤ E

[(

∆1

2
−∆1

)

I
α0+β0Xi<Yi<α0+β0Xi+

∆1
2

× IXi>ǫ0

]

≤ −
∆1

2
P

(

0 < Yi − α0 − β0Xi <
∆1

2

)

× IXi>ǫ0

This implies that

lim sup
n→∞

(

∫

W1

e

∑n
i=1 E

[

log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)]

dΠ(α, β)

)

1
n

≤ e
−

∆1
2

lim infn→∞
1
n

∑n
i=1 P

(

0<Yi−α0−β0Xi<
∆1
2

)

IXi>ǫ0

By assumption A.3, the R.H.S is well defined.

If we choose K1 =
∆1
2 ∗ lim inf 1

n

∑n
i=1 P

(

0 < Yi − α0 − β0Xi <
∆1
2

)

IXi>ǫ0 then ∃ N∗
1 such that ∀ n ≥

N∗
1 ,
∫

W1
e

∑n
i=1 E

[

log

(

f(α,β)i(Yi)

f(α0,β0)i
(Yi)

)]

dΠ(α, β) ≤ e−nK1Π(W1) ≤ e−nK1 (Note that the last step uses

assumption A.4 that Π is proper)
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Proof of Lemma 2.6. Again, we will prove the result for the set W1. The argument is similar

for other sets Wj for j=2,...,8. Recall that W1 = {(α, β) : α − α0 ≥ ∆1, β ≥ β0}. Let ǫ0 be as in

assumption A.3 and Zi = Yi − α0 − β0Xi. Define

C0 =
2× lim supm→∞

1
m

∑m
i=1E[|Zi|]

(1− τ) lim infm→∞
1
m

∑m
i=1 IXi>ǫ0

Note that assumption A.3 in particular implies that the denominator is well defined and assumption

A.5 ensures that the numerator is well defined. Now let A = B × ǫ0 = 2C0 and define

G1 = {(α, β) ∈ W1 : α− α0 ≤ A and β − β0 ≤ B}

= {(α, β) : (α− α0, β − β0) ∈ [∆1, A]× [0, B]}

Clearly G1 is compact. Now if (α, β) ∈ Gc
1 ∩W1 then either (α− α0) > A or (β − β0) > B. Further

if Xi > ǫ0 then in the former case we have bi = (α − α0) + (β − β0)Xi > A and in the latter case we

would have bi > B × ǫ0. So, in either case when Xi > ǫ0, we have bi > 2C0. We can write

n
∑

i=1

log

(

f(α,β)i(Yi)

f(α0,β0)i(Yi)

)

=

n
∑

i=1

log

(

f(α,β)i(Yi)

f(α0,β0)i(Yi)

)

IXi>ǫ0 +

n
∑

i=1

log

(

f(α,β)i(Yi)

f(α0,β0)i(Yi)

)

IXi≤ǫ0

Now, applying part(e) of Lemma 2.1 to the first term in R.H.S and part (d) to the second term (for

(α, β) ∈ Gc
1 ∩W1 ) we have,

n
∑

i=1

log

(

f(α,β)i(Yi)

f(α0,β0)i(Yi)

)

≤ −2C0(1− τ)
n
∑

i=1

IXi>ǫ0 +
n
∑

i=1

Z+
i IXi>ǫ0 +

n
∑

i=1

|Zi|IXi≤ǫ0

≤ −2C0(1− τ)

n
∑

i=1

IXi>ǫ0 +

n
∑

i=1

|Zi|

≤ −2nC0(1− τ) lim inf
m→∞

1

m

m
∑

i=1

IXi>ǫ0 + 2n lim sup
m→∞

1

m

n
∑

i=1

E [|Zi|] ,∀ n ≥ N1(ω)

= −nC0(1− τ) lim inf
m→∞

1

m

m
∑

i=1

IXi>ǫ0 ,∀ n ≥ N∗∗
1 (ω)

The last but one nequality follows by using assumption A.5, which allows the application of SLLN on

the sequence {|Zn|}. Now, if we take b1 = C0(1 − τ) lim infm→∞
1
m

∑m
i=1 IXi>ǫ0 , it is easy to see that

∀ n ≥ N∗∗
1 (ω),

∫

Gc
j∩Wj

e

∑n
i=1 log

f(α,β)i(Yi)

f(α0,β0)i
(Yi) dΠ(α, β) ≤ e−nb1Π(W1 ∩ Gc

1) ≤ e−nb1 . (Note that the last

step uses assumption A.4 that Π is proper).
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