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In this paper, an new extended formulation of the Single-Source Un-capacitated Facility Location Problem 

(SSUFLP) is presented that incorporates the cardinality of the customer set assigned to facilities (or agents) 

into its formulation. Given a set of M potential facilities and N customers (or jobs), the traditional integer 

programming formulation consists of O(mn) variables and constraints, where |M| = m and |N| = n. In our 

extended formulation, potential facility location variables as well as variables describing assignment of 

customers to agents are disaggregated into n possible cardinalities. Consequently, our formulation consists 

of O(mn2) variables and constraints. Given this, we first show that all non-trivial facets of the polytope 

associated with this disaggregated formulation can be described by 0-1 coefficients for variables 

representing assignment of customers to agents and non-negative, integer coefficients of variables 

representing facility location. We next present in detail, all possible structures of these non-trivial facet 

inequalities, which we refer to as p-Agent Cardinality Matching inequalities. These inequalities are 

constructed around N’N jobs assigned to WpM agents in which |Wp| = p. This is motivated by identifying 

a fractional solution to the LP relaxation of the extended formulation, in which all the fractional variables 

are associated with N’ and Wp. The basic idea behind these inequalities is to ‘match’ n’ = |N’| jobs to a set 

of 2 ≤ p ≤ m agents with specific cardinalities. The structure varies depending on the relative sizes of p and 

n’, as well as the cardinalities associated each agent in Wp. All the structures of the p-Agent Cardinality 

Matching inequalities presented in this paper are shown to be facets of the polytope defined by the convex 

hull of feasible solutions to our extended formulation. For each such structure, we identify fractional 

solutions to the LP relaxation of our formulation that violate it. These structures cover all possible 

combinations of N’ and Wp. Therefore, the p-Agent Cardinality Matching inequalities along with the trivial 

inequalities completely describe the polytope of the LP relaxation of the extended formulation. 

Keywords: Integer Programming, Facility Location, Valid Inequalities, Facets. 
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1. Introduction 

 

The Single-Source Un-capacitated Facility Location Problem (SSUFLP) (also referred to as the Simple 

Plant Location Problem) is a well-considered problem in Integer Programming. In SSUFLP, a set of M 

potential facility locations (or agents) and a set of N customers (or jobs) are specified. The cost of setting 

up a facility at location iM is fi and the cost of servicing a customer jN entirely by a facility at iM is 

cij. Without loss of generality, we can assume the cost parameters to be non-negative. The optimization 

problem is to determine which agents to open, and to which opened facility must each customer jN must 

be assigned, so as to minimize total cost. The standard integer programming formulation of SSUFLP 

involves two sets of binary variables: yi = 1 if facility at location iM is opened, 0 otherwise, and xij = 1 if 

customer j is assigned to facility at location i, 0 otherwise. Such a formulation of SSUFLP is: 

(Pxy) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑁𝑖∈𝑀

+ ∑ 𝑓𝑖𝑦𝑖

𝑖∈𝑀

 

Subject to: 

∑ 𝑥𝑖𝑗

𝑖∈𝑀

= 1                                          ∀𝑗𝜖𝑁                                                                                              (1) 

       𝑥𝑖𝑗 ≤ 𝑦𝑖                                                     ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁                                                                           (2)   

𝑥𝑖𝑗 , 𝑦𝑖 ∈ {0,1}                                   ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁.                                                                         (3) 

In (Pxy), (1) describes the assignment of each customer jN to one of the locations in M and is known as 

semi-assignment constraints, while (2) (known as Variable Upper Bound (VUB) constraints) ensures that 

customer j cannot be assigned to a facility location i if it is not set up. SSUFLP is NP-Hard [10], and 

therefore there has been considerable interest in evolving methods to solve large instances of it in reasonable 

time. One such approach has been to try and describe the polyhedron defining the convex hull of feasible 

solutions to (Pxy) as ‘closely’ as possible. The main thrust of this paper is to start with a extended formulation 

of SSUFLP that in turn reveals inequalities that are facets of the associated polyhedron, and in all cases, 

along with trivial facets, completely describes it. 

1.1 Literature Review 

Spanning almost four decades, extensive work has been done in attempting to solve SSUFLP and its closely 

related problems such as the capacitated facility location problem and the capacitated concentrator location 

problem. The latter two includes knapsack type constraints on each agent i. It is important to underscore 

the fact that the capacitated concentrator location problem is the capacitated version of SSUFLP wherein 
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every customer is served wholly by one concentrator. We will first review, albeit briefly, work done on the 

capacitated version of SSUFLP, followed by that on SSUFLP in greater detail.  

There are two broad and yet distinct methodological approaches to solving the capacitated version of 

SSUFLP. One approach involved the use of Lagrangian relaxation, particularly with respect to the 

capacitated version of SSUFLP. Sridharan’s [16] work on the capacitated version of SSUFLP is amongst 

the earliest known, followed more recently by Holmberg et al. [13], Cortinhal and Captivo [8], Chen and 

Ting [4] and several in between. The main thrust of this approach has been to dualize the semi-assignment 

constraints and solve a series of knapsack constraints to obtain a tight lower bound. In addition, primal 

heuristics, including Ant Colony approach in [4] have been used to obtain good upper bound. This is then 

embedded in a branch-and-bound to get the exact solution. The other approach involves attempting to 

describe the polytope defined by the convex hull of feasible solutions to the capacitated version of SSUFLP. 

Aardal [1] considered knapsack cover, flow cover and effective capacity inequalities that specifically 

address the presence of knapsack inequalities in capacitated facility location. In addition, a form of 

combinatorial inequalities was introduced for SSUFLP that is also valid for the capacitated version. Labbè 

and Yaman [14] introduced the quadratic form of the Capacitated Concentrator Location Problem, with a 

formulation that involves constraints which are quadratic. They studied the polytope of the resulting 

formulation and developed strong inequalities for it. These inequalities were incorporated as cuts in a 

branch-and-cut methodology using separation heuristics. Yang et a. [20] considered the (Pxy) given above 

along with the knapsack constraints for each iM. In their approach, they introduced Lifted Cover 

Inequalities (LCI) and Fenchel cutting planes (FCI) that arise from the knapsack constraints. They 

implemented exact separation algorithms for both. Further, they implemented a cut-and-solve approach, 

with branching done on a sum of variables, akin to a GUB constraint. Gouveia and Saldanha-da-Gama [11] 

considered a variant of the Capacitated Concentrator Location Problem, wherein the knapsack constraints 

are replaced by GUB constraints that limit the number of customers assigned to concentrators. They further 

considered an extension wherein several capacity options can be chosen at each concentrator location. For 

this problem, they presented an extended formulation that disaggregates the y variables into various 

cardinalities, each representing the number of terminals assigned to it. They also presented “≤” and “≥” 

inequalities for their extended formulation. 

Galli et. al [9] provide a comprehensive exposition on the prior reported work on describing the SSUFLP 

polyhedra defined as: H(x, y) = Conv{(x, y)Rmn+m| (1)-(3)}, the convex hull of feasible solutions to (1)-

(3), which we provide here more briefly. Cornuéjols and Thizy [7] represented (Pxy) as a vertex packing 

problem. Using known results for the vertex packing problem, they established the dimension of H(x, y) 

and that VUB constraints (2), xij≥0 and yi≤1, are trivial facets of H(x, y). Apart from the results presented 

in Galli et. al [9], what is indeed common across all the work presented below is that the vertex packing 

problem is represented by a graph G(V, E). Further, any new valid inequality is defined on G(V, E) with a 

specific structure. Using the terminology in [9], Cornuéjols and Thizy [7] presented circulant inequalities 

as generalizations of those in [12]. As well, they presented translates of the odd hole inequalities for the 
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vertex packing problem as valid inequalities for H(x, y). It has been shown that given the structure of 

constraints describing the vertex packing problem and therefore (Pxy), that any non-trivial facet of H(x, y) 

is of the form Tx ≤ Ty+, with ≥0, ≥0 and >0.  Cho et. al [5, 6], to begin with, examined inequalities 

with elements in  and  being binary. Aardal [1] referred to them as combinatorial inequalities. 

Combinatorial inequalities are generalizations of circulant inequalities, which in turn generalize odd cycle 

inequalities. Cho et. al [5] showed that a combinatorial inequality is a facet of H(x, y) if and only if a) it 

constitutes a non-empty face of H(x, y), b) it has at least three non-zero elements in , and c) no element in 

, can be lifted from 0 to 1. In addition, all non-trivial facets of H(x, y) needed to completely describe its 

polytope for the cases, i) m = 3, n ≥ 3 and ii) m ≥ 3, n = 3, were identified in [5] and [6], respectively. All 

of them are combinatorial inequalities. Finally, Cho et. al [6] presented a class of inequalities in which 

components of  are either 0, 1 or 2, components of  is binary and  = 2. Aardal [1] presented a special 

class of combinatorial inequalities which are a generalization of circulant inequalities. 

Cánovas et al. [2] introduced grille inequalities in which the elements of  are binary,  = 1, but elements 

of  can be arbitrary non-negative integers. Like circulant inequalities, grille inequalities are derived from 

the associated vertex packing graph having a specific structure. They have been shown to be facets of H(x, 

y). In [3], the same authors introduced fan and wheel inequalities which are not combinatorial. As with 

other inequalities mentioned earlier, these inequalities are derived from the vertex packing graph, with the 

graph resembling a fan and wheel, respectively. Galli et. al [9] introduced a new way of constructing valid 

inequalities for H(x, y), the resulting inequalities they refer to as homogenous inequalities. Unlike circulant, 

grille, fan or wheel inequalities, homogenous inequalities do not specify a structure on the associated vertex 

packing graph G(V, E). Rather, given any connected graph, with certain characteristics there is a procedure 

to construct strong homogenous inequalities. In that respect, homogenous inequalities are shown to be 

generalizations of combinatorial inequalities as well as grille inequalities. In particular, they point to the 

existence of facet defining homogenous inequalities which are neither circulant nor grille inequalities. The 

number of such inequalities are exponential in number. Finally, they present a new procedure called facility 

augmentation, using which many more facet defining inequalities of H(x, y) can be derived. 

1.2 Contributions of this Paper 

The focus of this paper is on a new extended formulation of SSUFLP and it associated valid inequalities. 

The principal idea behind this formulation is to specify a cardinality to a facility that is opened, where 

cardinality defines the number of customers assigned to it. Similarly, the assignment of a customer to a 

facility is also disaggregated by the associated cardinality of the facility to which it is assigned to. 

Accordingly, each y variable in (Pxy) is disaggregated into n variables, each associated with a cardinality 

varying from 1 to n. Similarly, each x variable in (Pxy) is disaggregated into n distinct variables. 

Consequently, the number of variables and constraints expand to O(mn2). In Section 2.0, we first formally 

present the extended formulation, denoted (Pzy). We next identify all the trivial facets of the polytope 

defined by the convex hull of the feasible solutions to (Pzy). Finally, we discuss in detail the essential 
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features of any non-trivial facet of the convex hull of the feasible solutions to (Pzy). Most importantly, we 

show that all non-trivial facets of the polytope associated with this disaggregated formulation can be 

described entirely in terms of 0-1 coefficients for variables representing assignment of customers to agents 

and non-negative, integer coefficients of variables representing facility location. This greatly simplifies the 

identification of all the non-trivial facets. We refer to these non-trivial facet inqualities as p-Agent 

Cardinality Matching (p-ACM) inequalities, which is described in depth in Section 3. The p-ACM 

inequalities are defined by N’N jobs assigned to WpM agents in which |Wp| = p. This in turn is motivated 

by isolating the fractional part of any feasible solution to the LP relaxation of our extended formulation. 

That is, all the variables which are non-integer, are associated with N’ and Wp, which are rendered infeasible 

by the p-ACM inequality. The structure varies depending on the relative sizes of p and n’, as well as the 

cardinalities associated each agent in Wp. All the structures of the p-Agent Cardinality Matching inequalities 

presented in Section 3.0 are shown to be facets of the polytope defined by the convex hull of feasible 

solutions to our extended formulation. For each such structure, we identify fractional solutions to the LP 

relaxation of our formulation that violate it. Thus, these structures cover all possible combinations of N’ 

and Wp. Therefore, the p-Agent Cardinality Matching inequalities along with the trivial inequalities 

completely describe the polytope of the LP relaxation of the extended formulation. This then is the principal 

contribution of this paper. 

 

2.0 An Extended Formulation of SSUFLP and its Polytope 

The formulation proposed below disaggregates each y variable in (Pxy) into n variables, each specifying the 

number of customers (jobs) assigned to the agent that the y variable represents. In the same way, the x 

variables in (Pxy) are also disaggregated in terms of the cardinality associated with agent i. The binary 

variables used are: 𝑦𝑖𝑘𝑖
= 1, if facility (agent) i is opened with ki jobs assigned to it with 1 ≤ ki ≤ n, 0 

otherwise, and 𝑧𝑖𝑗𝑘𝑖
= 1, if job j is one of the ki jobs assigned to agent i, 0 otherwise. The extended 

formulation is: 

(Pzy) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒        𝐹(𝑧, 𝑦) = ∑ ∑ ∑ 𝑐𝑖𝑗𝑧𝑖𝑗𝑘𝑖

𝑛

𝑘𝑖=1𝑗∈𝑁𝑖∈𝑀

+ ∑ ∑ 𝑓𝑖𝑦𝑖𝑘𝑖

𝑛

𝑘𝑖=1𝑖∈𝑀

 

s.t. 

∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛

𝑘𝑖=1𝑖∈𝑀

= 1                                 ∀𝑗 ∈ 𝑁                                                          (4) 

𝑧𝑖𝑗𝑘𝑖
≤ 𝑦𝑖𝑘𝑖

                                           ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁, 𝑘𝑖 = 1, … … , 𝑛 − 1          (5) 

𝑧𝑖𝑗𝑛 = 𝑦𝑖𝑛                                            ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁                                              (6) 



 

6 
 

∑ 𝑧𝑖𝑗𝑘𝑖

𝑗∈𝑁

= 𝑘𝑖𝑦𝑖𝑘𝑖
                         ∀𝑖 ∈ 𝑀, 𝑘𝑖 = 1, … … , 𝑛 − 1                            (7) 

∑ 𝑦𝑖𝑘𝑖

𝑛−1

𝑘𝑖=1

+ ∑ 𝑦𝑖′𝑛

𝑚

𝑖′=1

≤ 1                               ∀𝑖 ∈ 𝑀                                                   (8) 

𝑧𝑖𝑗𝑘𝑖
, 𝑦𝑖𝑘𝑖

∈ {0,1}               ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁, 𝑘𝑖 = 1, … … , 𝑛                                    (9) 

In the formulation above, (4) represents the semi-assignment constraints for each jN across all agents and 

cardinalities, (5) the VUB constraints associated with each iM, jN and 1 ≤ ki ≤n-1. Note that if agent i is 

opened with all n jobs assigned to it, then the VUB constraints become equalities as indicated in (6). 

Constraints (7) enforce the cardinality requirement that if a agent i with a cardinality of ki is opened, then 

exactly ki jobs have to be assigned to it. Constraints (8) model two phenomena. The first is that for each 

agent iM, at most one type of cardinality is opened. In addition, if some other agent i’i with a cardinality 

of n is opened, i.e., all jobs are assigned to i’, then agent i of any cardinality cannot be open. 

Note that (Pxy) and (Pzy) are not equivalent. While every feasible solution in (Pzy) can be translated to an 

equivalent feasible solution in (Pxy) with the same objective function value, the converse is not true. 

Specifically, (Pxy) allows for a agent i to be opened (yi = 1), without any job being assigned to it. Such an 

option does not exist in (Pzy), which requires at least one job to be assigned for a agent to be opened. 

However, it is worth noting, that as long as fi ≥ 0 (which is generally the case), the optimal solution to (Pxy) 

will always be one wherein if a agent is opened, at least one job will be assigned to it. This fact will have 

some bearing when we examine the LP relaxations of (Pxy) and (Pzy), respectively. 

Let, 

LP(x, y) = {(x, y)Rmn+m |(1)-(2), x ≥ 0, 0≤y≤1, are satisfied}, while    (10) 

LP(z, y) = {(𝑧, 𝑦) ∈ 𝑅𝑚𝑛2+𝑚𝑛|(4) − (8), 𝑧 ≥ 0, 𝑦 ≥ 0}.      (11) 

Consider a (z+, y+)LP(z, y). A solution (x+, y+) can be constructed from (z+, y+) as follows: 

𝑥𝑖𝑗
+ = ∑ 𝑧𝑖𝑗𝑘𝑖

+

𝑛

𝑘𝑖=1

     𝑎𝑛𝑑    𝑦𝑖
+ = ∑ 𝑦𝑖𝑘𝑖

+

𝑛

𝑘𝑖=1

,             𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁.                                         (12) 

It is easy to see that (x+, y+)LP(x, y). This is because aggregation of z over ki ensures that (4) reduces to 

(1), while the aggregation of z and y as shown in (12) ensures that (5) and (6), collapse to (2). Finally, (8) 

and (4) together ensure that 0 ≤ xij ≤ 1 and 0 ≤ yi ≤ 1 for each iM and jN. Further, F(z+, y+) = F(x+, y+). 

Does every (x+, y+)LP(x, y) translate to a (z+, y+)LP(z, y) with F(z+, y+) = F(x+, y+)? To answer this 

question, consider the solution type (x+, y+)LP(x, y) in which 𝑦𝑖
+ = 𝑀𝑎𝑥{𝑥𝑖𝑗

+|𝑗 ∈ 𝑁} for each iM. Let 

𝐽𝑖
+ = {𝑗 ∈ 𝑁|𝑥𝑖𝑗

+ > 0}. An equivalent (z+, y+)LP(z, y) can be constructed in the following way. Let  = 

Min {𝑥𝑖𝑗
+| 𝑗 ∈ 𝐽𝑖

+} and k = |𝐽𝑖
+|. Set i) 𝑧𝑖𝑗𝑘

+ =  for each j𝐽𝑖
+, ii) 𝑦𝑖𝑘

+ = , iii) 𝑦𝑖
+ =  𝑥𝑖𝑗

+- for each j𝐽𝑖
+, and 
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finally iv) redefine 𝐽𝑖
+ = {𝑗 ∈ 𝑁|𝑥𝑖𝑗

+ > 0}. Repeat steps i) – iv) till 𝐽𝑖
+ = . An important observation about 

this process is that (z+, y+) so constructed satisfy the cardinality constraints (7) without violating (5). Further, 

F(z+, y+) = F(x+, y+). However, if 1 ≥  𝑦𝑖
+ > 𝑀𝑎𝑥{𝑥𝑖𝑗

+|𝑗 ∈ 𝑁} for one or more iM, it is no longer possible 

to find an equivalent (z+, y+)LP(z, y) such that F(z+, y+) = F(x+, y+). 

Example 1: Consider a (x+, y+)LP(x, y) in part where 𝑦𝑖
+ = 0.7, 𝑥𝑖1

+ = 𝑥𝑖2
+ = 𝑥𝑖3

+ = 0.7, 𝑥𝑖4
+ = 𝑥𝑖5

+ = 0.5, 

𝑥𝑖6
+ = 0.3. The corresponding (z+, y+) obtained would be 𝑦𝑖6

+ = 𝑧𝑖1,6
+ = 𝑧𝑖2,6

+ = 𝑧𝑖3,6
+ = 𝑧𝑖4,6

+ = 𝑧𝑖5,6
+ =

𝑧𝑖6,6
+ = 0.3, 𝑦𝑖5

+ = 𝑧𝑖1,5
+ = 𝑧𝑖2,5

+ = 𝑧𝑖3,5
+ = 𝑧𝑖4,5

+ = 𝑧𝑖5,5
+ = 0.2, 𝑦𝑖3

+ = 𝑧𝑖1,3
+ = 𝑧𝑖2,3

+ = 𝑧𝑖3,3
+ = 0.2. Observe 

that constraints (5), (7) and (8) are all satisfied. However, if 𝑦𝑖
+ = 1.0, no equivalent solution in LP(z, y) 

exists. 

Since, typically fi ≥ 0 for all iM, one can expect the optimal solution to the LP relaxation of (Pxy) to satisfy 

yi = Max {xij| jN} for each iM. Therefore, the initial LP relaxations of (Pzy) and (Pzy) will give the same 

lower bound value. However, the significance of the above observation comes to play upon adding cuts to 

either LP relaxations. Adding cuts to LP(x, y) can result in fractional solutions wherein 𝑦𝑖
+ > 𝑀𝑎𝑥{𝑥𝑖𝑗

+|𝑗 ∈

𝑁} for one or more iM. Since no equivalent solution exists in LP(z, y), the bounds obtained from the LP 

relaxation of (Pzy) upon adding the ‘same’ cuts become superior. 

Example 2: Consider the following partial fractional solution in LP(x, y): y1 = y2 = y3 = 0.5, x11 = x13 = x21 

= x22 = x32 = x33 = 0.5, which in LP(z, y) translates to y12 = y22 = y32 = 0.5, z112 = z132 = z212 = z222 = z322 = z332 

= 0.5. However, if the classic odd-hole inequality x11 + x13 + x21 + x22 + x32 + x33 ≤ y1 + y2 +y3+1 is added to 

LP(x, y), then the fractional solution can adjust to y1 = y2 = y3 = 2/3, x11 = x13 = x21 = x22 = x32 = x33 = 0.5, 

thereby satisfying the odd-hole inequality and also feasible in LP(x, y). However, the corresponding 

fractional solution, y12 = y22 = y32 = 2/3, z112 = z132 = z212 = z222 = z322 = z332 = 0.5, does not belong in LP(z, 

y), as the cardinality constraints (7) are violated. Herein lies the value of the disaggregated formulation. 

2.1 Trivial Facets of the (Pzy) Polyhedra  

Let 

𝐻(𝑧, 𝑦) = 𝐶𝑜𝑛𝑣{(𝑧, 𝑦) ∈ 𝐵𝑝|(𝑧, 𝑦) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 (4) − (9), 𝑝 = 𝑚𝑛2 + 𝑚𝑛}                       (13) 

In order to keep our exposition as general as possible, we will assume that m ≥ 3. Clearly, for m = 1, (Pzy) 

is trivial. In the case of m = 2, one can construct an equivalent problem by adding another agent i’ with fi’ 

= ∞. 

In order to facilitate our subsequent discussions on the dimension of 𝐻(𝑧, 𝑦) and its facets, we present the 

notion of a cyclic (k, l) matrix as described in [3]. It is a square matrix of dimension  kXk, with entries of 0 

or 1. For rows i < k, starting from column i, l consecutive columns consist of ones, and the rest zero. The l 

consecutive positions include the cycling back to the first (i+l-1-k) columns consisting of ones when (i+l-

1-k)>0. For row i = k, if either k or l is odd, then the same rule applies as far as positioning of ones are 

concerned. However, if both k and l are even, then row k is modified wherein the element in the first column 
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consists of a zero followed by l-1 consecutive ones. With such a structure, the rows in the cyclic (k, l) matrix 

are linearly independent. 

Lemma 2.1 Dim{H(z, y)} = mn(n-1) + m-1  

Proof: It suffices to identify mn(n-1)+m affinely independent solutions (z, y)H(z, y) noting that (0, 

0)H(z, y). Assume items in M to be indexed arbitrarily from i = 1, …, m. For each 1≤i≤m and for each 

1≤ki≤n-1, the solution set is: 𝑦𝑖𝑘𝑖
= 1, 𝑧𝑖𝑗𝑘𝑖

= 1 for j𝑁𝑘𝑖
, 𝑦𝑖+1,𝑘𝑖+1

= 1, 𝑧𝑖+1,𝑗,𝑘𝑖+1
= 1 for  j{N-𝑁𝑘𝑖

}, 

where 𝑁𝑘𝑖
N is a selection with |𝑁𝑘𝑖

| = ki,, ki+1 = n-ki, and the rest of the variables equal to zero, while 

noting that when i = m, we replace index i+1 with 1. Observe that the above ‘block’ of solutions follows 

the cyclic (m, 2) matrix. For a given i and ki ≤ n-1, a set of n linearly independent selections of 𝑁𝑘𝑖
 from N 

can be made using the cyclic (n, ki) matrix. Thus, by considering n selections of 𝑁𝑘𝑖
 and varying i, one gets 

mn solutions. By varying ki from 1 to n-1, a total of mn(n-1) solutions are obtained. Finally, for each iM, 

yin =1, zijn = 1 for each jN, which are m in number, giving a total of mn(n-1)+m.     

Lemma 2.2 The inequalities, a) 𝑧𝑖𝑗𝑘𝑖
 ≥ 0 for all iM, jN, 1kin,  and b) VUB constraints (5) are all 

trivial facets of H(z, y).  

Proof: For both inequalities, mn(n-1)+m-1 affinely independent solutions in H(z, y) that satisfy the 

respective inequalities as an equality are identified.  

Consider first the inequality in a). When ki = n, all the solutions listed in the proof of Lemma 2.1 satisfy 

𝑧𝑖𝑗𝑛 ≥ 0 as an equality, except for the solution, yin =1, zijn = 1 for each jN, resulting in mn(n-1)+m-1 affinely 

independent solutions in H(z, y).  

Next consider cases in which ki ≤ n-1. The set of affinely independent solutions are described pictorially in 

Figure 1 in which columns represent z variables and rows represent feasible solutions that satisfy a) as an 

equality. The columns under label i(j, ki) represent the collection of z variables in which i is fixed, but j 

varies from 1 to n and ki varies from 1 to n-1. Each ‘block’ in the figure represents the intersection of those 

rows and columns in which at least one z variable is non-zero. The z variables are ordered such that the first 

set of columns come under i(j, ki), followed by columns associated with indices in {M-i} arranged in any 

arbitrary order as: i1, …., im-1.  

The set of solutions that satisfy 𝑧𝑖𝑗𝑘𝑖
 ≥ 0 as an equality are as follows: 

I) One set involves pairings 𝑖𝑙(𝑗, 𝑘𝑖𝑙
) and 𝑖𝑙+1(𝑗, 𝑘𝑖𝑙+1

), for l = 1,…, m-2. In addition, when l = m-1, then 

l+1 is equal to 1 if m is even, and 2, otherwise. In Figure 1, the block rows labeled as A1(i1 and i2), A1(i2 

and i3) and A1(i1 and i3), display such an arrangement. It is clear from the figure, that these rows display a 

(m-1, 2)-cyclic matrix structure.  Consequently, for these rows to be affinely independent, it suffices to 

show that the rows in each block are independent. The solution in each row is: 𝑦𝑖𝑙𝑘𝑖𝑙
= 1, 𝑧𝑖𝑙𝑗𝑘𝑖𝑙

= 1 for 

j𝑁𝑘𝑖𝑙
, 𝑦𝑖𝑙+1𝑘𝑖𝑙+1

= 1, 𝑧𝑖𝑙+1𝑗𝑘𝑖𝑙+1
= 1 for j𝑁𝑘𝑖𝑙+1

, where 𝑁𝑘𝑖𝑙
N, 𝑁𝑘𝑖𝑙+1

= {N - 𝑁𝑘𝑖𝑙
}, with |𝑁𝑘𝑖𝑙

| = 𝑘𝑖𝑙
 and 

|𝑁𝑘𝑖𝑙+1
| = n-𝑘𝑖𝑙

. The cardinality 𝑘𝑖𝑙
 takes values from 1 to n-1. For each value of 𝑘𝑖𝑙

, n independent selections 
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of 𝑁𝑘𝑖𝑙
 from N are made using the (n, 𝑘𝑖𝑙

)-cyclic matrix, hence affinely independent. These set of solutions 

account for a total of (m-1)n(n-1)  solutions.  

II) Another set of solutions are: i) 𝑦𝑖𝑘′𝑖
= 1, 𝑧𝑖𝑗𝑘′𝑖

= 1 for j𝑁𝑘′𝑖
, 𝑦𝑖1𝑘𝑖1

= 1, 𝑧𝑖1𝑗𝑘𝑖1
= 1 for j𝑁𝑘𝑖1

, with 

𝑁𝑘′𝑖
N, 𝑁𝑘𝑖1

= {N - 𝑁𝑘′𝑖
} and |𝑁𝑘′𝑖

| = k’i. Here, the cardinality k’i takes on all values between 1 and n-1, 

except ki. For each value of k’i, n independent selections of 𝑁𝑘′𝑖
 from N are made. ii) 𝑦𝑖𝑘𝑖

= 1, 𝑧𝑖𝑗′𝑘𝑖
= 1 

for j’𝑁𝑘𝑖
, 𝑦𝑖1𝑘𝑖1

= 1, 𝑧𝑖1𝑗′𝑘𝑖1
= 1 for j’𝑁𝑘𝑖1

, where 𝑁𝑘𝑖
{N-j}, 𝑁𝑘𝑖1

= {N - 𝑁𝑘𝑖
}. Here, n-1 independent 

selections of 𝑁𝑘𝑖
 from {N-j} are made. These set of solutions are represented in rows labeled, A1(i and i1) 

in Figure 1, and amount to n(n-2)+(n-1) in number.  

III) Finally, the solution set, yin = 1, zijn = 1 for all jN and the rest of the variables equal to zero also satisfies 

a) as an equality. There are m such solutions, one for each iM. Hence, a total of mn(n-1)+m-1 independent 

solutions have been identified. 

Consider next the VUB constraints (5) in b). Observe that solution sets listed in I), II) i) and III) above for 

the inequality in a) all correspond to 𝑦𝑖𝑘𝑖
= 𝑧𝑖𝑗𝑘𝑖

= 0 and satisfy (5) as an equality. These three sets together 

account for (m-1)n(n-1)+n(n-2)+m solutions. The solution set in II) ii) above is modified as follows: 𝑦𝑖𝑘𝑖
=

1, 𝑧𝑖𝑗𝑘𝑖
= 1, 𝑧𝑖𝑗′𝑘𝑖

= 1 for each j’𝑁𝑘𝑖−1{N-j}, 𝑦𝑖1𝑘𝑖1
= 1, 𝑧𝑖1𝑗′𝑘𝑖1

= 1 for j’𝑁𝑘𝑖1
, where |𝑁𝑘𝑖−1| = ki-

1, 𝑁𝑘𝑖1
= {N-𝑁𝑘𝑖−1}. There are n-1 independent selections of 𝑁𝑘𝑖−1 from {N-i}. This results in a total of 

mn(n-1)+m-1 affinely independent solutions.                  

 

Figure 1. Illustration of a set of mn(n-1)-1 affinely independent solutions 

Lemma 2.3 The inequality (8) for each iM is a trivial facet of H(z, y). 

Proof: To begin with, the solution set, yi’n = 1, zi’jn = 1 for each jN satisfy (8) as an equality for each i’M, 

including i’ = i. This accounts for m solutions. The rest of the feasible solutions that satisfy (8) as an equality 

are shown in Figure 2 below. One set of solutions, labeled as A2, comprise of two blocks, one associated 

with i and the other with each i’{M-i}. Specifically, 𝑦𝑖𝑘𝑖
= 1, 𝑧𝑖𝑗𝑘𝑖

= 1 for j𝑁𝑘𝑖
, and 𝑦𝑖′𝑘𝑖′

= 1, 𝑧𝑖′𝑗𝑘𝑖′
=
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1 for i’{M-i} and each j{N-𝑁𝑘𝑖
}. Here, 𝑁𝑘𝑖

N is an independent selection with |𝑁𝑘𝑖
| = ki < n and ki’ = 

|N-𝑁𝑘𝑖
|. For each value of ki, there are n independent selections of 𝑁𝑘𝑖

. The n selections are structured using 

the cyclic (n, ki) matrix. Further, ki varies from 1 to n-1. Thus, A2 accounts for (m-1)n(n-1) solutions. 

The third set of solutions, called A3, comprise of blocks associated with a pair {im-1, im}{M-i} as well as 

i, shown in Figure 2.  In A3, one set of solutions denoted A3(i), consists of a) 𝑦𝑖𝑘𝑖
= 1, 𝑧𝑖𝑗𝑘𝑖

= 1 for each 

j𝑁𝑘𝑖
 with 𝑁𝑘𝑖

N, |𝑁𝑘𝑖
| = ki and 1 ≤ ki ≤ n-2, b) 𝑦𝑖𝑚−11 = 1, 𝑧𝑖𝑚−1𝑗𝑚−11 = 1, for  jm-1{N-𝑁𝑘𝑖

} and c) 

𝑦𝑖𝑚𝑘𝑖𝑚
= 1, 𝑧𝑖𝑚𝑗𝑘𝑖𝑚

= 1 for each j{N-𝑁𝑘𝑖
-jm-1}. Here, n independent selections of 𝑁𝑘𝑖

 are made in a cyclic 

(n, ki) matrix manner, with the columns of variables in 𝑁𝑘𝑖
 being contiguous. Thus, the ith selection starts 

in column i and ends in column i+ki-1. If (i+ki-1) > n, then the last (i+ki-1-n) variables chosen cycle back to 

the first (i+ki-1-n) columns. Also, jm-1 is situated to the immediate right of the last column in 𝑁𝑘𝑖
. Since ki 

varies from 1 to n-2, there are n(n-2) solutions in A3(i). A second set of solutions, denoted A3(ii), consists 

of: a) 𝑦𝑖1 = 1, 𝑧𝑖𝑗1 = 1, 𝑦𝑖𝑚−1𝑘𝑖𝑚−1
= 1, 𝑧𝑖𝑚−1𝑗𝑚−1𝑘𝑖𝑚−1

= 1 for each jm-1𝑁𝑘𝑖𝑚−1
 with 𝑘𝑖𝑚−1

= 𝑛 − 2 

and b) 𝑦𝑖𝑚1 = 1, 𝑧𝑖𝑚𝑗𝑚1 = 1 where jm{N-j-𝑁𝑘𝑖𝑚−1
}. The n-2 columns under 𝑁𝑘𝑖𝑚−1

occupy contiguous 

positions to the immediate right of j, followed by jm. Here, j is varied from 1 to n-1. Accordingly, the indices 

in 𝑁𝑘𝑖𝑚−1
 and jm shift to the right in a cyclic manner. Thus A3(ii) accounts for n-1 solutions satisfying (8) 

as an equality. The total number of solutions listed above equal to mn(n-1)+m-1. 

By definition, the solutions listed above are shown to be affinely independent, by showing that the only 

way to combine these solutions to obtain a zero vector is by multiplying each by zero. The first observation 

is that the m solutions, each with a different agent having a cardinality of n are unique and therefore have 

to be multiplied by zero. Next observe that in Figure 2, the blocks under 𝑖2(𝑗, 𝑘𝑖2
) until 𝑖𝑚−2(𝑗, 𝑘𝑖𝑚−2

) (not 

in figure) are unique, displaying a staircase structure. Further, the solutions within each block under 

𝑖2(𝑗, 𝑘𝑖2
) until 𝑖𝑚−2(𝑗, 𝑘𝑖𝑚−2

) are linearly independent as previously discussed. Hence, all solutions from 

A2(i and i2) till A2(i and im-2) have to be multiplied by zero to obtain a zero vector. This leaves us with 

solutions in A2(i and im-1), A2(i and im) and A3(i, im-1 and im). Again in A2(i and im-1), the part solutions 

under 𝑖𝑚−1(𝑗, 𝑘𝑖𝑚−1
) with 𝑘𝑖𝑚−1

= 𝑛 − 1 are unique. The same holds true for the part solutions in which  

𝑘𝑖𝑚−1
 varies from 2 to n-3. In A2(i and im), the part solutions under 𝑖𝑚(𝑗, 𝑘𝑖𝑚

) with 𝑘𝑖𝑚
= 𝑛 − 1 are unique 

as well. Thus, all these solutions have to be multiplied by zero to obtain a zero vector.  
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Figure 2. Illustration of independent solutions satisfying (8) as an equality 

The solutions (or rows) left to be considered are shown in Figure 3 below. For the sake of brevity, only the 

cardinalities of part solutions are indicated. To obtain a zero vector from the remaining rows, we begin with 

the part solutions under 𝑖𝑚(𝑗, 𝑘𝑖𝑚
). To obtain a zero vector under 𝑖𝑚(𝑗, 𝑘𝑖𝑚

), the rows in A2(i and im) and 

A3(i, im-1 and im) are combined as follows. First, each solution in A2(i and im) is weighted by 1. Second, 

each solution in A3(i) for 𝑘𝑖𝑚
= 2, … , 𝑛 − 2 is weighted by -1. Finally, for 𝑘𝑖𝑚

= 1, the solutions in A3(i), 

consisting of n-1 rows that match those in A3(ii) are given a weight of -0.5, as are the rows in A3(ii). The 

remaining row in A3(i) with 𝑘𝑖𝑚
= 1 is given a weight of -1. On applying the above weights, the columns 

under 𝑖𝑚(𝑗, 𝑘𝑖𝑚
) disappear, and A2(i and im) and A3(i, im-1 and im) collapses into one row consisting of the 

following: i) 𝑧𝑖𝑗1 = −1.5 for each j corresponding to each row in A3(ii) and 𝑧𝑖𝑗1 = −1 for that j not in 

A3(ii), ii) 𝑧𝑖𝑗𝑛−1 = 1 for each j𝑁𝑛−1, for n selections of 𝑁𝑛−1N, iii) 𝑧𝑖𝑗𝑛−2 = −0.5 for the n-1 selections 

of 𝑁𝑛−2N, iv)  𝑧𝑖𝑚−1𝑗𝑚−11 = −(𝑛 − 2.5) for n-1 indices of jm-1, and v) 𝑧𝑖𝑚−1𝑗𝑚−1𝑛−2 = −0.5 for the same 

n-1 indices of j in N. Clearly, the solution set in A2(i and im-1) in which 𝑧𝑖𝑗2 = 1, for the n selections of N2 

N are unique under the columns i(j, ki) and therefore they are weighted by 0. Similarly under 

𝑖𝑚−1(𝑗, 𝑘𝑖𝑚−1
), the collapsed row consisting of 𝑧𝑖𝑚−1𝑗𝑚−1𝑛−2 = −0.5 for n-1 indices in N are unique and 

need to be weighted by 0. This then leaves us with n rows in A2(i and im-1) consisting of solutions 𝑧𝑖𝑗𝑛−1 =

1 for each Nn-1N, each of which is unique and needs to be weighted by 0.    

 

Rows   i(j, ki)         𝑖2(𝑗, 𝑘𝑖2
) ……..  𝑖𝑚−1(𝑗, 𝑘𝑖𝑚−1

)       𝑖𝑚(𝑗, 𝑘𝑖𝑚
)   ………… 

A2(i and i2)                             ………… 

 

A2(i and im-1)                                                                 ………… 

 

A2(i and im)                                               ………… 

 

A3(i, im-1 and im)                                   …………. 
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Figure 3. Illustration of the remaining rows in A2(i and im-1), A2(i and im) and A3(i, im-1 and im). 

2.2 Characterizations of non-trivial facets of H(z, y) 

We next describe general properties of the facets of H(z, y). Let  denote a vector consisting of sub-vectors, 

(1, …, m), with each i in turn consisting of sub-vectors (i-1, …., i-n). Sub-vector 𝛼𝑖−𝑘𝑖 =

(𝛼𝑖1𝑘𝑖
, 𝛼𝑖2𝑘𝑖

, … , 𝛼𝑖𝑛𝑘𝑖
)𝑇 and α(j) is a vector consisting of coefficients 𝛼𝑖𝑗𝑘𝑖

, with i varying from 1 to m, and 

ki varying from 1 to n.  denotes a vector consisting of sub-vectors, (1, …, m), with 𝛽𝑖 = (𝛽𝑖1, 𝛽𝑖2, . . . , 𝛽𝑖𝑛). 

In its most generic form, all facets of H(z, y) take the form,  

z ≤ y + 0,           (14) 

with 0 being a scalar. Associated with any facet of H(z, y), Smn = {(z, y)𝐵𝑚𝑛2
|(𝑧, 𝑦) ∈ 𝐻(𝑧, 𝑦), that satisfy 

(14) as an equality and are affinely independent}. From our discussion in Section 2.1, Smn consists of mn(n-

1)+m-1 affinely integer solutions. For notational convenience, Imn = {1,..., mn(n-1)+m-1} denotes indices 

for each (z, y)Smn. For each lImn, let M’(l)M denote the set of opened agents with 𝑁𝑘𝑖
(𝑙)N, the set of 

ki items assigned to iM’(l). Clearly, ∑ 𝑘𝑖𝑖∈𝑀′(𝑙)  = n and ⋃ 𝑁𝑘𝑖
(𝑙)𝑖∈𝑀′(𝑙) = 𝑁. Further, Smn necessarily 

contains the m solutions: yin = 1, zijn = 1 for all jN for each iM. The remaining set in Smn comprises of 

solutions in which |M’(l)| ≥ 2.  

Rows   i(j, ki)            𝑖𝑚−1(𝑗, 𝑘𝑖𝑚−1
)         𝑖𝑚(𝑗, 𝑘𝑖𝑚

)  

    

A2(i and im-1)                                                                            

             

 

 

A2(i and im)               

 

 

 

A3(i, im-1 and im)                                                                                                 

           

 

 

        

ki = 2  𝑘𝑖𝑚−1
= n-2 

 
𝑘𝑖 = 𝑛 − 1 𝑘𝑖𝑚−1

= 1 

𝑘𝑖

= 2, … , 𝑛 − 1 

𝑘𝑖𝑚

= 𝑛 − 2, . . . . ,1 

𝑘𝑖 = 1, … , 𝑛 − 2 

in A3(i), 𝑘𝑖 =

1(𝑛 − 1 𝑟𝑜𝑤𝑠) in 

A3(ii) 

 

𝑘𝑖𝑚−1
=

1 𝑖𝑛 𝐴3(𝑖), 𝑘𝑖𝑚−1
= 𝑛 −

2(𝑜𝑣𝑒𝑟 𝑛 − 1 𝑟𝑜𝑤𝑠) in 

A3(ii) 

 

𝑘𝑖𝑚
= 𝑛 − 2, . . . . ,1, 

in A3(i), 𝑘𝑖𝑚
=

1 (𝑜𝑣𝑒𝑟 𝑛 − 1 𝑟𝑜𝑤𝑠) 

in A3(ii) 
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Remark 2.1 An important observation about (14) is that the cardinality constraint (7) being an equality, 

(14) can be transformed into an equivalent inequality by changing some of the coefficients as follows: 

𝑖)         𝛼𝑖−𝑘𝑖 →  𝛼𝑖−𝑘𝑖 + ∆,         (15a) 

𝑖𝑖)         𝛽𝑖𝑘𝑖
→  𝛽𝑖𝑘𝑖

+  𝑘𝑖∆,         (15b) 

for any  ≠ 0. Similarly, with the semi-assignment constraint (4), (14) can be transformed into an equivalent 

inequality by making the following changes, 

i) α(j) → α(j) + ,          (16a) 

ii) β0 → β0 + ,          (16b) 

for any  ≠ 0.  

Using the aforementioned transformations, any facet of H(z, y) can be represented in a form wherein (α, β) 

≥ 0 and 0 > 0. Specifically, we will use those solutions corresponding to lImn with |M’(l)| ≥ 2 for the 

transformations. The following three-step procedure transforms a facet inequality of H(z, y) into one in 

which (α, β) ≥ 0 and 0 > 0.  

Algorithm_Transform: 

I) For any iM, and ki = 1,.., n, whose 𝛽𝑖𝑘𝑖
< 0, execute (15a) and (15b) with  = −𝛽𝑖𝑘𝑖

/𝑘𝑖.  

II) For any iM, jN and ki = 1,..,n, whose 𝛼𝑖𝑗𝑘𝑖
< 0, execute (16a) and (16b) with  = -𝛼𝑖𝑗𝑘𝑖

.  

III) For each iM, and ki = 1,..,n-1, first determine αmin = Min {𝛼𝑖𝑗𝑘𝑖
| jN, 𝛽𝑖𝑘𝑖

/𝑘𝑖} and then execute 

(15a) and (15b) with  = - αmin. 

It is important to note that in each of the three steps of Algorithm_Transform, the left-hand-side (l-h-s) and 

right-hand-side (r-h-s) values of (14) change by the same amount for each (z, y)Smn. Hence, after the 

transformation, (14) is satisfied exactly by each (z, y)Smn, while still remaining valid. It is also clear from 

our earlier discussion in Section 2.1 that the m solutions: yin = 1, zijn = 1 for each jN are also part of Smn. 

Therefore, without loss of generality, one can set 𝛼𝑖𝑗𝑛= 𝛼0 and 𝛽𝑖𝑛 = 𝑛𝛼0-𝛽0, for each iM, jN. 

Henceforth, our primary focus will be on coefficient vectors 𝛼𝑖−𝑘𝑖 and 𝛽𝑖𝑘𝑖
, where 1 ≤ ki ≤ n-1. 

Lemma 2.4 After execution of Algorithm_Transform, the facet inequality (14) is transformed into one in 

which (α, β) ≥ 0 with α ≠ 0, and 0 > 0. 

Proof: It is apparent that after Step I), β ≥ 0, and after step II), α ≥ 0. Clearly, step III) of 

Algorithm_Transform ensures that α ≠ 0. Its execution indicates that 𝛼𝑖𝑗𝑘𝑖
> 0 for some iM, 1 ≤ ki ≤ n, 

for each jN. Hence, α ≥ 0 with α ≠ 0. For each lImn, we have that 

∑ ∑ 𝛼𝑖𝑗𝑘𝑖

𝑗∈𝑁𝑘𝑖
(𝑙)𝑖∈𝑀′(𝑙)

= ∑ 𝛽𝑖𝑘𝑖

𝑖∈𝑀′(𝑙)

+ 𝛽0.                                                                                                        (17) 
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Suppose β0 ≤ 0. Then (14) is transformed using (16a) and (16b), wherein  = -β0/n. After this transformation, 

β0 = 0 and that α > 0. Next, in (14), using (6) and (7), the y variables are substituted out. Consequently, (14) 

takes the form: α’z ≤ 0, where α’ denotes the vector of revised α values after the substitution of y can be 

suitably converted to one with β0 = 0. By definition, α’z = 0 for each (z, y)Smn, which are mn(n-1)+m-1 in 

number.  This results in 𝛼𝑖𝑗𝑘𝑖

′ =0 for each iM, jN, 1 ≤ ki ≤ n, suggesting that (14) is a linear combination 

of constraints (6) and (7) making it trivial. Hence, 0 > 0.            

Remark 2.2 It needs to be noted that due to step II) of Algorithm_Transform, either 𝛼𝑖𝑗𝑘𝑖
= 0 for at least 

one jN, for each iM and ki = 1,..,n-1, or that 𝛽𝑖𝑘𝑖
= 0. We refer to the resulting inequality (14) as minimal, 

and the z variables whose coefficients 𝛼𝑖𝑗𝑘𝑖
= 0, as hidden assignments. They will play an important role 

in the construction of Cardinality Matching inequalities alluded to later in this paper.  

Definition 2.1 Let 𝑀̂M be defined as the smallest set of agents in M such that 𝑀̂∩M’(l) ≠  for each 

lImn in which |M’(l)| ≥ 2. That is, 𝑀̂ comprises of the minimal number of agents that are present in each of 

the mn(n-1)-1 affinely independent solutions in Smn where |M’(l)| ≥ 2. 

There are then two distinct types of facets as they pertain to the construction of solutions in which |M’(l)| ≥ 

2. In one type, |𝑀̂| = 1, and in the other, |𝑀̂| ≥ 2. The solution set illustrated in Figure 2 is an example of the 

former, while that in Figure 1 illustrates the latter. Note that in the example illustrated in Figure 1, 𝑀̂ = {i1, 

i2}, if M = {i, i1, i2, i3}. With regards to any facet (14), we will refer to agents in 𝑀̂ as primary agents, and 

the rest as secondary agents. 

Proposition 2.1 Any minimal facet of H(z, y) in which β = 0 reduces to either a) 𝑧𝑖∗𝑗∗𝑘𝑖∗ ≥ 0, for some 

i*M, j*N and 1 ≤ 𝑘𝑖∗  ≤ n-1, or b) constraint (8) for some i*M. 

Proof: An equivalent form of the inequality 𝑧𝑖∗𝑗∗𝑘𝑖∗ ≥ 0 is  

∑ ∑ 𝑧𝑖𝑗∗𝑘𝑖

𝑛

𝑘𝑖=1𝑖∈{𝑀−𝑖∗}

+ ∑ 𝑧𝑖∗𝑗∗𝑘𝑖

𝑘𝑖∗−1

𝑘𝑖=1

+ ∑ 𝑧𝑖∗𝑗∗𝑘𝑖

𝑛

𝑘𝑖=𝑘𝑖∗+1

≤ 1,                                             (18𝑎) 

which is obtained by adding −𝑧𝑖∗𝑗∗𝑘𝑖∗ ≤ 0 to the equality constraint (4) associated with j*. Another 

equivalent form of inequality 𝑧𝑖∗𝑗∗𝑘𝑖∗ ≥ 0 is obtained by executing step III) of Algorithm_Transform on 

(18a) with αmax = 1. The resulting inequality obtained is: 

∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛

𝑘𝑖=1𝑗∈𝑁𝑖∈{𝑀−𝑖∗}

+ ∑ ∑ 𝑧𝑖∗𝑗𝑘𝑖

𝑛

𝑘𝑖=1𝑗∈{𝑁−𝑗∗}

+ ∑ 𝑧𝑖∗𝑗∗𝑘𝑖

𝑘𝑖∗−1

𝑘𝑖=1

+ ∑ 𝑧𝑖∗𝑗∗𝑘𝑖

𝑛

𝑘𝑖=𝑘𝑖∗+1

≤ 𝑛.        (18𝑏) 

By substituting out all the y variables using (6) and (7), constraint (8) for i* reduces to 

∑ ∑
1

𝑘𝑖∗
𝑧𝑖∗𝑗𝑘𝑖∗

𝑛−1

𝑘𝑖∗=1𝑗∈𝑁

+ ∑ ∑
1

𝑛
𝑧𝑖𝑗𝑛

𝑗∈𝑁𝑖∈𝑀

≤ 1.                                                                                    (19) 
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We now proceed to show that all minimal facets of H(z, y) with β = 0 reduce to either (18a) or (19). For 

such facets, the following equality: 

∑ ∑ 𝛼𝑖𝑗𝑘𝑖

𝑗∈𝑁𝑘𝑖
(𝑙)𝑖∈𝑀′(𝑙)

=  𝛽0,                                                                                                                       (20) 

results for each lImn. In the case of the m solutions in Smn: yin = 1, zijn = 1 for all jN, for each iM, (20) 

reduces to ∑ 𝛼𝑖𝑗𝑛𝑗∈𝑁 = 𝛽0. To identify the remaining mn(n-1)-1 affinely independent solutions in Smn, in 

which |M’(l)| ≥ 2, we consider two dichotomous cases: a) |𝑀̂| ≥ 2, and b) |𝑀̂| = 1.  

We begin with the case of |𝑀̂| ≥ 2. Consider first those solutions (z, y)Smn in which M’(l) = {i1, i2}𝑀̂, 

𝑘𝑖1
= 1, 𝑘𝑖2

= 𝑛 − 1 and j1 is assigned to i1. Assume for the moment that 𝑘𝑖∗  ≠ 1 and 𝑘𝑖∗ ≠ n-1. Thus, if 𝑖1 

is replaced by another primary agent i𝑀̂ to which 𝑗1 is assigned to, then (20) again holds. The same holds 

true if 𝑖1 is replaced by a secondary agent i{M-𝑀̂}. Thus, 𝛼𝑖1𝑗1 = 𝛼𝑖2𝑗1 = ⋯ =  𝛼𝑖𝑚𝑗1 =  𝛼𝑗1. If 𝑘𝑖∗ = 1, 

then the above holds for all i ≠ i*. 

Using induction, it can be shown that, except for 𝛼𝑖∗𝑗∗𝑘𝑖∗ , all coefficients in α(j) are equal, for each jN. 

This is accomplished by sequentially switching between solutions that exclude 𝑧𝑖∗𝑗∗𝑘𝑖∗ = 1. Consider a (z, 

y)Smn in which M’(l) = {i1, i2}, with 𝑘𝑖1
= 2, 𝑘𝑖2

= 𝑛 − 2 and i2𝑀̂. Further, 𝑁𝑘𝑖1
(𝑙)= {j1, j2}. Then, (20) 

holds for both when i1𝑀̂ and i1𝑀̂. Let i1 be replaced by i3 and i4 with 𝑘𝑖3
= 𝑘𝑖4

= 1, and j1 and j2 assigned 

to i3 and i4, respectively. Regardless of whether i3 and i4 are primary agents or not, (20) holds. Therefore, 

 𝛼𝑖1𝑗12 + 𝛼𝑖1𝑗22 = 𝛼𝑗11 + 𝛼𝑗21.          (21) 

If in (21), j1 is replaced by j3, then 

 𝛼𝑖1𝑗32 + 𝛼𝑖1𝑗22 = 𝛼𝑗31 + 𝛼𝑗21.         (22) 

Similarly, with j3 replacing j2 in (21), we obtain 

 𝛼𝑖1𝑗12 + 𝛼𝑖1𝑗32 = 𝛼𝑗11 + 𝛼𝑗31.         (23) 

If (𝛼𝑖1𝑗12-𝛼𝑗11) =  ≠ 0, then from (21), (𝛼𝑖1𝑗22-𝛼𝑗21) = -. From (22), one obtains (𝛼𝑖1𝑗32-𝛼𝑗31) = -(𝛼𝑖1𝑗22-

𝛼𝑗21) = . However, from (23), a contradiction results with (𝛼𝑖1𝑗12-𝛼𝑗11) = -(𝛼𝑖1𝑗32-𝛼𝑗31) = -, which is only 

resolved when  = 0. Therefore, 𝛼𝑖𝑗2 = 𝛼𝑗1 for each jN. Now assume that 𝛼𝑗𝑘𝑖
= 𝛼𝑗𝑘𝑖−1, for all jN for 

some ki ≥2. Consider a lImn with M’(l) = {i1, i2}, 𝑘𝑖1
= 𝑘𝑖 + 1, 𝑘𝑖2

= 𝑛 − 𝑘𝑖 − 1, satisfying (20). This 

solution is perturbed by replacing i1 with i3 and i4, with 𝑘𝑖3
= 𝑘𝑖 and 𝑘𝑖4

= 1 with a j1𝑁𝑘𝑖+1(𝑙) now 

assigned to i4. Since 𝛼𝑗𝑘𝑖
= 𝛼𝑗𝑘𝑖−1 for all jN, for some ki ≥ 2, applying it recursively, one can conclude 

that 𝛼𝑗𝑘𝑖
= 𝛼𝑗1 for all jN. Therefore, 

∑ 𝛼𝑗𝑘𝑖+1

𝑗∈{𝑁𝑘𝑖+1(𝑙)−𝑗1}

+ 𝛼𝑗1𝑘𝑖+1 = ∑ 𝛼𝑗1

𝑗∈{𝑁𝑘𝑖+1(𝑙)−𝑗1}

+ 𝛼𝑗11.                                                                    (24) 

Alternatively, 
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𝛼𝑗1𝑘𝑖+1 − 𝛼𝑗11 = − ∑ (𝛼𝑗𝑘𝑖+1 − 𝛼𝑗1)

𝑗∈{𝑁𝑘𝑖+1(𝑙)−𝑗1}

.                                                                                      (25) 

Now assume that, 𝛼𝑗1𝑘𝑖+1 − 𝛼𝑗11 = ∆≠ 0. A j2{N-𝑁𝑘𝑖+1(𝑙)} is selected and exchanged with j1, i.e., after 

the exchange j2𝑁𝑘𝑖+1(𝑙) while j1{N-𝑁𝑘𝑖+1(𝑙)}. With this exchange, (20) still holds and therefore the 

right-hand-side of (25) remains unchanged, i.e 𝛼𝑗2𝑘𝑖+1 − 𝛼𝑗21= . It follows that ∑ (𝛼𝑗𝑘𝑖+1 −
𝑗∈{𝑁𝑘𝑖+1(𝑙)−𝑗2}

𝛼𝑗1) = −∆. Therefore, there must be a j3{𝑁𝑘𝑖+1(𝑙) − 𝑗2}, for which 𝛼𝑗3𝑘𝑖+1 − 𝛼𝑗31 = 3 < 0 if   > 0, and 

3 > 0 if   < 0. Let j1 and j3 be exchanged wherein j1𝑁𝑘𝑖+1(𝑙) and j3{N-𝑁𝑘𝑖+1(𝑙)}. Consequently, 

− ∑ (𝛼𝑗𝑘𝑖+1 − 𝛼𝑗1)
𝑗∈{𝑁𝑘𝑖+1(𝑙)−𝑗2}

 changes by (-3)≠0. With this new exchange, 𝛼𝑗2𝑘𝑖+1 − 𝛼𝑗21 also 

changes by (-3)≠0, a contradiction, which is only resolved if  = 3 = 0. Thus, for each j{N-j*}, 𝛼𝑗𝑘𝑖
=

𝛼𝑗, for ki = 1,.., n-1. When j=j*, 𝛼𝑗∗𝑘𝑖
= 𝛼𝑗∗  for each ki≠𝑘𝑖∗, and 𝛼𝑖∗𝑗∗𝑘𝑖∗ < 𝛼𝑗∗ . With regards to coefficients 

𝛼𝑖𝑗𝑛, using (6) are modified as follows. First determine, i = (αj - 𝛼𝑖𝑗𝑛), for each iM. Due to (6), 

coefficients 𝛼𝑖𝑗𝑛 and βin are modified as, 𝛼𝑖𝑗𝑛 → 𝛼𝑖𝑗𝑛 + ∆𝑖 and 𝛽𝑖𝑛 → 𝛽𝑖𝑛 + ∆𝑖, respectively. This ensures 

that 𝛼𝑖𝑗𝑛 = 𝛼𝑗 for each jN. Let, By setting  = (αmax-𝛼𝑗) where αmax = Max {𝛼𝑗 | jN}, α(j) and β0 are 

updated as per (16a) and (16b) for each j. As a result, an equivalent inequality in which 𝛼𝑗 is the same for 

all j, except for 𝛼𝑖∗𝑗∗𝑘𝑖∗  is obtained. Next, by setting  = -𝛼𝑖∗𝑗∗𝑘𝑖∗  and updating α(j) and β0 as per (16a) and 

(16b) for each j, an equality which is a multiple of (18a) is obtained.  

Now consider the case of |𝑀̂| = 1 with 𝑀̂ = {𝑖}̂. Then, for each lImn since |M’(l)| ≥ 2, M’(l) must contain 

at least one secondary agent. Consider a (z, y)Smn consisting of M’(l) = {i1, 𝑖}̂, 𝑘𝑖1
= 1, 𝑘𝑖̂ = 𝑛 − 1, with 

j assigned to i1 (a secondary agent). By keeping the assignment to 𝑖 ̂fixed and reassigning j to another agent 

i{M-M’(l)}, (20) holds. Hence, 𝛼𝑖1𝑗1 =  𝛼𝑗1 for each i1{M-𝑀̂}. Now consider a (z, y)Smn in which 

M’(l) = {i1, 𝑖}̂, 𝑘𝑖1
= 2, 𝑘𝑖̂ = 𝑛 − 2. Again, by keeping the assignment to 𝑖 ̂fixed, and varying the assignment 

to i1, as described above in (21), (22) and (23), it is easy to show that 𝛼𝑖1𝑗2 = 𝛼𝑗1 for each jN and i1{M-

𝑀̂}. Extending this argument inductively from 𝑘𝑖1
 to 𝑘𝑖1

+ 1 using the logic of (24) and (25), 𝛼𝑗𝑘𝑖
= 𝛼𝑗 for 

each jN and i{M-𝑖}̂.  

Consider again a lImn in which M’(l) = {i1, 𝑖}̂, with j1𝑁𝑘𝑖1
(𝑙) and j2{N-𝑁𝑘𝑖1

(𝑙)}=𝑁𝑘𝑖̂
(𝑙) for which (20) 

holds. The feasible solution in which the assignments of j1 and j2 are switched also belongs to Smn. 

Consequently 

𝛼𝑗1
+ 𝛼𝑖̂𝑗2𝑘𝑖̂

= 𝛼𝑗2
+ 𝛼𝑖̂𝑗1𝑘𝑖̂

,                                                                                                            (26) 

which alternately can be stated as 

𝛼𝑖̂𝑗1𝑘𝑖̂
− 𝛼𝑖̂𝑗2𝑘𝑖̂

= 𝛼𝑗1
− 𝛼𝑗2

,                                                                                                             (27) 

for every pair {j1, j2}N and every 1 ≤ 𝑘𝑖̂ ≤ n-1. Consider another perturbation of the solution, M’(l) = {i1, 

𝑖}̂, in which the assignment of jobs in 𝑁𝑘𝑖1
(𝑙) to i1 is fixed, but jobs in 𝑁𝑘𝑖̂

(𝑙) are now assigned to another 

i2 ≠ 𝑖.̂ Since (20) holds only for solutions that involve 𝑖,̂ it follows that  
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∑ 𝛼𝑗

𝑗∈𝑁𝑘𝑖̂
(𝑙)

< ∑ 𝛼𝑖̂𝑗𝑘𝑖̂

𝑗∈𝑁𝑘𝑖̂
(𝑙)

,                                                                                                                       (28) 

for every selection of 𝑁𝑘𝑖̂
(𝑙) N. Naturally, 𝛼𝑗 < 𝛼𝑖̂𝑗𝑘𝑖̂

 for every jN. Since (28) holds for every 1 ≤ 𝑘𝑖̂ ≤ n-

1, 𝛼𝑗 < 𝛼𝑖̂𝑗𝑘𝑖̂
 for each 1 ≤ 𝑘𝑖̂ ≤ n-1. As a first step, the α coefficients are modified as follows. For each jN, 

→ −𝛼𝑗 and (16a) and (16b) is executed. Consequently, after the update, 𝛼𝑖𝑗𝑘𝑖
= 0 for each i{M-𝑖}̂, 1 ≤ ki 

≤ n. Since 𝛼𝑗 < 𝛼𝑖̂𝑗𝑘𝑖̂
, 𝛼𝑖̂𝑗𝑘𝑖̂

> 0 after the update. Further, due to (27), after the update, 𝛼𝑖̂𝑗𝑘𝑖̂
= 𝛼𝑖̂𝑘𝑖̂

 for each 

jN, and 1 ≤ 𝑘𝑖̂ ≤ n-1. As well, 𝛽0 > 0 after the update. In order to satisfy (14) as an equality, 𝑘𝑖̂𝛼𝑖̂𝑘𝑖̂
= 𝛽0. 

Therefore, 𝛼𝑖̂𝑘𝑖̂
= 𝛽0/𝑘𝑖̂, and the resulting inequality is a multiple of (19).            

The import of Proposition 2.1 is that in any minimal, non-trivial facet of H(z, y), (α, β) ≥ 0 with β ≠ 0. It 

then naturally follows that if for any iM and 1 ≤ ki ≤ n-1, 𝛽𝑖𝑘𝑖
>0, then 𝛼𝑖−𝑘𝑖  ≠ 0. Otherwise, (14) cannot 

be a non-trivial facet of H(z, y). 

Definition 2.2 For each iM, 1 ≤ ki ≤ n-1, 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛= {j’N| 𝛼𝑖𝑗′𝑘𝑖
 = Min{𝛼𝑖𝑗𝑘𝑖

|𝑗 ∈ 𝑁}}. 

Lemma 2.5 For any (z, y)Smn associated with a minimal, non-trivial facet of H(z, y), ⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙)  ≠ , 

in which 1 ≤ 𝑘𝑖 ≤ n-1 for each iM’(l). 

Proof: The proof of the above is constructed by contradiction. Assume that for some lImn, ⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙)  

= . Let such a feasible solution be denoted as (z, y)1. There must exist a pair {𝑖1, 𝑖2}M’(l) in (z, y)1 for 

which 𝑁𝑖1−𝑘𝑖1

𝑚𝑖𝑛 𝑁𝑖2−𝑘𝑖2

𝑚𝑖𝑛 = . There are three possibilities with regards to the composition of 𝑁𝑘𝑖1
(𝑙) and 

𝑁𝑘𝑖2
(𝑙). One possibility is that there exists a 𝑗𝑖1

𝑁𝑖1−𝑘𝑖1

𝑚𝑖𝑛 𝑁𝑘𝑖1
(𝑙), as well as a 𝑗𝑖2

𝑁𝑖2−𝑘𝑖2

𝑚𝑖𝑛 𝑁𝑘𝑖2
(𝑙). By 

assumption, 𝑗𝑖1
𝑁𝑖2−𝑘𝑖2

𝑚𝑖𝑛 and 𝑗𝑖2
𝑁𝑖1−𝑘𝑖1

𝑚𝑖𝑛 . Consequently, 𝛼𝑖1𝑗𝑖1𝑘𝑖1
< 𝛼𝑖1𝑗𝑖2𝑘𝑖1

 and 𝛼𝑖2𝑗𝑖2𝑘𝑖2
< 𝛼𝑖2𝑗𝑖1𝑘𝑖2

. 

Therefore, upon switching the assignments of 𝑗𝑖1
 and 𝑗𝑖2

, (14) is violated, contradicting the fact that (14) is 

valid.  

A second possibility is that while a 𝑗𝑖1
𝑁𝑖1−𝑘𝑖1

𝑚𝑖𝑛 𝑁𝑘𝑖1
(𝑙) exists, 𝑁𝑖2−𝑘𝑖2

𝑚𝑖𝑛 𝑁𝑘𝑖2
(𝑙) = . Suppose that a 

𝑗𝑖2
𝑁𝑖2−𝑘𝑖2

𝑚𝑖𝑛  is assigned to 𝑖3{M’(l)-i1-i2}. We now consider the exchanging the assignment of 𝑗𝑖2
 with 

each j𝑁𝑘𝑖2
(𝑙). Since (14) is valid, (𝛼𝑖3𝑗𝑖2𝑘𝑖3

- 𝛼𝑖2𝑗𝑖2𝑘𝑖2
) ≥ (𝛼𝑖3𝑗𝑘𝑖3

- 𝛼𝑖2𝑗𝑘𝑖2
) for each j𝑁𝑘𝑖2

(𝑙). For a 

j*𝑁𝑘𝑖2
(𝑙), let (𝛼𝑖3𝑗∗𝑘𝑖3

- 𝛼𝑖2𝑗∗𝑘𝑖2
)  = 𝑀𝑎𝑥𝑗∈𝑁𝑘𝑖2

(𝑙){(𝛼𝑖3𝑗𝑘𝑖3
- 𝛼𝑖2𝑗𝑘𝑖2

)}. If (𝛼𝑖3𝑗∗𝑘𝑖3
- 𝛼𝑖2𝑗∗𝑘𝑖2

) = (𝛼𝑖3𝑗𝑖2𝑘𝑖3
- 

𝛼𝑖2𝑗𝑖2𝑘𝑖2
), then upon exchanging the assignment of 𝑗𝑖2

 and j*, another feasible solution (z, y)2Smn is 

obtained. However, exchanging the assignment of 𝑗𝑖1
 and 𝑗𝑖2

 in (z, y)2 results in (14) being violated. Hence, 

(z, y)2Smn. In fact, all feasible solutions obtained by exchanging the assignments of 𝑗𝑖2
 and j in (z, y)1 for 

each j𝑁𝑘𝑖2
(𝑙) do not belong to Smn. Similarly, in (z, y)2, all exchanges of assignments between j1{𝑁𝑘𝑖1

(𝑙)-

𝑗𝑖1
} and j2{𝑁𝑘𝑖2

(𝑙)-𝑗𝑖2
} result in feasible solutions that do not belong to Smn. The same is true for all 

exchanges of assignments between j1{𝑁𝑘𝑖1
(𝑙)-𝑗𝑖1

} and j𝑁𝑘𝑖
(𝑙) for i{M’(l)-i1-i2} in (z, y)2. Thus, all 

feasible solutions in which 𝑗𝑖2
 is assigned to i2 strictly satisfy (14). This then violates the assumption that 

(14) is a facet. A final possibility is that in (z, y)1, 𝑁𝑖1−𝑘𝑖1

𝑚𝑖𝑛 𝑁𝑘𝑖1
(𝑙) =  and 𝑁𝑖2−𝑘𝑖2

𝑚𝑖𝑛 𝑁𝑘𝑖2
(𝑙) = . Consider 

a 𝑗𝑖1
𝑁𝑖1−𝑘𝑖1

𝑚𝑖𝑛 that is assigned to 𝑖3{M’(l)-i1-i2}. Suppose that by exchanging the assignment of 𝑗𝑖1
 with a 
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j𝑁𝑘𝑖1
(𝑙), a solution that belongs to Smn is obtained, then this corresponds to the second possibility 

described above. This completes the proof.         

What is immediately clear from Lemma 2.5 is that in any (z, y)Smn associated with a minimal, non-trivial 

facet of H(z, y), for at least one j{⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙) }, j𝑁𝑘𝑖

(𝑙), for some iM’(l). In any lM’(l), let a 

𝑗̂{⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙) } be assigned to 𝑖̂M’(l). Since (14) is a facet, for all j’{N| j𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛 for any iM’(l)} 

and which is currently assigned to 𝑖′{M’(l)-𝑖}̂ with a cardinality 𝑘𝑖′ , the following holds: 

∆𝑖̂ = 𝛼𝑖′𝑗′𝑘
𝑖′

− 𝛼𝑖̂𝑗′𝑘𝑖̂
=  𝛼𝑖′𝑗̂𝑘

𝑖′
− 𝛼𝑖̂𝑗̂𝑘𝑖̂

.                                                                                                            (29) 

The same holds if j’ in (29) is replaced by j{⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙) -𝑗̂}. 

Corollary 2.1 For some lImn associated with a minimal, non-trivial facet of H(z, y) and a j𝑁𝑘𝑖
(𝑙), if 

j𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛 then j{⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙) }. 

Proof: To prove, assume the converse, i.e., for some lImn, there exists a j𝑁𝑘𝑖
(𝑙) such that j𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛, but 

j{⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙) }. Therefore, there must be an 𝑖′M’(l) for which j𝑁𝑖′−𝑘

𝑖′

𝑚𝑖𝑛 . Suppose that a 

𝑗̂{⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙) } is assigned to 𝑖′. Then, if the assignments of j and 𝑗̂ are exchanged, i.e., j assigned to 𝑖′ 

and 𝑗̂ assigned to i, results in a violation of (14). That is because (𝛼𝑖𝑗′𝑘𝑖
− 𝛼𝑖̂𝑗′𝑘𝑖̂

) > (𝛼𝑖𝑗̂𝑘𝑖
− 𝛼𝑖̂𝑗̂𝑘𝑖̂

), unlike 

in (29). This contradicts the fact that (14) is valid. Suppose that no 𝑗̂{⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙) } is assigned to 𝑖′. 

Rather, 𝑗̂{⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙) } is assigned to 𝑖"{M’(l)- 𝑖′}. By exchanging the assignment of 𝑗̂ with that of a 

j” 𝑁𝑘𝑖
(𝑙), the resulting solution belongs to Smn, due to (29). With this perturbed solution, exchanging the 

assignment of j and 𝑗̂ results in (14) being violated, a contradiction.     

Lemma 2.5 and Corollary 2.1 both together suggests that in any lImn associated with a non-trivial facet of 

H(z, y), each j𝑁𝑘𝑖
(𝑙) of iM’(l), is such that either j{⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙) }, or j𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛 for each iM’(l). 

Proposition 2.2 Let 𝑀̂M denote a set associated with a minimal facet of H(z, y) as per in Definition 2.1. 

Then, for all minimal, non-trivial facets of H(z, y), |𝑀̂| ≥ 2. 

Proof: We proceed to show that all minimal facets of H(z, y) whose |𝑀̂| = 1 reduce to (19), a trivial facet. 

Let 𝑀̂ = {𝑖}̂. Since |M’(l)| ≥ 2, each (z, y)Smn consists of at least one secondary agent. Consider a lImn in 

which M’(l) = {𝑖,̂ 𝑖2}, 1 ≤ 𝑘𝑖̂ ≤ n-1 and 𝑘𝑖2
= n-𝑘𝑖̂. Therefore, 

∑ 𝛼𝑖̂𝑗𝑘𝑖̂

𝑗∈𝑁𝑘𝑖̂
(𝑙)

+ ∑ 𝛼𝑖2𝑗𝑘𝑖2

𝑗∈𝑁𝑘𝑖2
(𝑙)

= 𝛽𝑖̂𝑘𝑖̂
+ 𝛽𝑖2𝑘𝑖2

+ 𝛽0.                                                                     (30) 

It is clear from Lemma 2.5 that in M’(l), there exists a 𝑗𝑖̂𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛𝑁𝑖2−𝑘𝑖2

𝑚𝑖𝑛 . Further, for (14) to be a facet, n 

independent selections of 𝑁𝑘𝑖2
from N are required that satisfy (30). Therefore, by exchanging the 

assignment of 𝑗𝑖̂ and each j{N-𝑗𝑖̂} between 𝑖 ̂and 𝑖2, (30) must hold. Thus, substituting 𝑖2 for 𝑖′ and j for 

j’, (29) holds, i.e., ∆𝑖̂ = 𝛼𝑖̂𝑗𝑘𝑖̂
− 𝛼𝑖2𝑗𝑘𝑖2

 for each j{N-𝑗𝑖̂}.  
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For each secondary agent 𝑖2, ∆ = ∆𝑖̂ as determined in (29) is used to update the coefficients 𝛼𝑖2𝑗𝑘𝑖2
 and 

𝛽𝑖2𝑘𝑖2
 as specified (15a) and (15b) for each j{N-𝑗𝑖̂}. Consequently, 𝛼𝑖2𝑗𝑘𝑖2

 = 𝛼𝑖̂𝑗𝑘𝑖̂
, for each 𝑖2{M-𝑖}̂ and 

each jN. Next, let 𝑖2 be replaced by two secondary agents 𝑖3 and 𝑖4, with respective cardinalities 𝑘𝑖3
 and 

𝑘𝑖4
 such that 𝑘𝑖3

+𝑘𝑖4
 = 𝑘𝑖2

. The coefficients 𝛼𝑖3𝑗𝑘𝑖3
, 𝛽𝑖3𝑘𝑖3

, 𝛼𝑖4𝑗𝑘𝑖4
 and 𝛽𝑖4𝑘𝑖4

 are updated using (15a) and 

(15b) for each j{N-𝑗𝑖̂} the same way as with i2. Since the choice of 𝑘𝑖̂, 𝑘𝑖2
 and 𝑘𝑖3

 is arbitrary, after the 

updates, 𝛼𝑖2𝑗𝑘𝑖2
 = 𝛼𝑗 for each jN, 1 ≤ 𝑘𝑖2

≤ n-1. As well, 𝛼𝑖̂𝑗𝑘𝑖̂
 = 𝛼𝑗 for each jN, 1 ≤ 𝑘𝑖̂ ≤ n-1. The choice 

of 𝑖2 being arbitrary, 𝛽𝑖2𝑘𝑖2
= 𝛽𝑘𝑖2

, for each 𝑖2 ≠ 𝑖,̂ which holds true for each 1 ≤ 𝑘𝑖2
 ≤ n-1. Another 

consequence of this transformation is that the l-h-s of (30) reduces to ∑ 𝛼𝑗𝑗∈𝑁  for each lImn. To complete 

the transformation, 𝛼𝑖𝑗𝑛 → 𝛼𝑗, for each iM and 𝛽𝑖𝑛 → ∑ 𝛼𝑗𝑗∈𝑁 − 𝛽0, for each iM. We next define 𝛼0 = 

(∑ 𝛼𝑗𝑗∈𝑁 )/n, and execute transformation (16a) and (16b) for each jN, with  = (𝛼0 – 𝛼𝑗). As a result, 𝛼𝑖𝑗𝑘𝑖
 

= 𝛼0 for each iM, 1 ≤ ki ≤ n-1. Since n𝛼0 = ∑ 𝛼𝑗𝑗∈𝑁 , β0 remains unchanged. Since the l-h-s of (30) is equal 

to n𝛼0 for each lImn, 𝛽𝑖̂𝑘𝑖̂
+ 𝛽𝑖2𝑘𝑖2

= 𝛽𝑖̂𝑘𝑖̂+1 + 𝛽𝑖2𝑘𝑖2−1, for each 𝑖2{M-𝑖}̂ and 2 ≤ 𝑘𝑖2
 ≤ n-1, given that 

𝑘𝑖̂+𝑘𝑖2
 = n. Stated in another way, (𝛽𝑖̂𝑘𝑖̂+1 − 𝛽𝑖̂𝑘𝑖̂

) = (𝛽𝑖2𝑘𝑖2
-𝛽𝑖2𝑘𝑖2−1) for 2 ≤ 𝑘𝑖2

 ≤ n-1. If 𝑖2 is replaced by 

{𝑖3, 𝑖4}{M-𝑖}̂, in which 𝑘𝑖3
= 𝑘𝑖2

− 1, and 𝑘𝑖4
= 1, then such a solution belongs to Smn as well. Thus, 

𝛽𝑘𝑖2
= 𝛽𝑘𝑖2

−1 + 𝛽1, which holds for all 2 ≤ 𝑘𝑖2
 ≤ n-1, which in turn implies that 𝛽𝑘𝑖2

= 𝑘𝑖2
𝛽1. Similarly, 

(𝛽𝑖̂𝑘𝑖̂+1 − 𝛽𝑖̂𝑘𝑖̂
) = β1 for 1 ≤ 𝑘𝑖̂ ≤ n-2, implying that 𝛽𝑖̂𝑘𝑖̂

= (𝑘𝑖̂ − 1)𝛽1 + 𝛽𝑖̂1 for 1 ≤ 𝑘𝑖̂ ≤ n-1.  

By definition, for each lImn, 𝑖 ̂necessarily belongs to M’(l). Thus, if 𝑖 ̂is replaced by 𝑖1{M-𝑖-̂𝑖2} in M’(l), 

then (30) becomes a strict less-than inequality. This suggests that 𝛽𝑖̂𝑘𝑖
 < 𝛽𝑖𝑘𝑖

 for each i{M-𝑖}̂, 1 ≤ ki ≤ n-

1. Therefore, 𝛽𝑖̂1 < 𝛽1. That being the case, (30) can be rewritten as: 

𝑛𝛼0 = (𝑘𝑖̂ − 1)𝛽1 + 𝛽𝑖̂1 + 𝑘𝑖2
𝛽1 + 𝛽0.                                                                                                       (31) 

Since n is integer and (𝑘𝑖̂+𝑘𝑖2
) = n, it follows that 𝛼0 = 𝛽1 = 𝛽0, while 𝛽𝑖̂1 = 0 satisfies (31). Using (6) 

and (7) to substitute out the y variables results in (14) to be a multiple of (19), a trivial facet.    

Definition 2.3 For a given lImn, let 𝑦𝑖𝑘𝑖
=1 for an iM’(l), along with 𝑧𝑖𝑗𝑘𝑖

 = 1, for j𝑁𝑘𝑖
(l). Then Co-l(i-

ki) denotes the complementary part of this solution, i.e. 𝑦𝑖′𝑘
𝑖′

=1 and 𝑧𝑖′𝑗𝑘
𝑖′

 = 1 for each j𝑁𝑘
𝑖′ (l), 𝑖′{M’(l)-

i}.  

Lemma 2.6 In any minimal, non-trivial facet of H(z, y), for each 1 ≤ ki ≤ n-1, 𝛽𝑖1𝑘𝑖
= 𝛽𝑖2𝑘𝑖

 and 𝛼𝑖1−𝑘𝑖 = 

𝛼𝑖2−𝑘𝑖 for all pairs {𝑖1, 𝑖2}{M-𝑀̂}. 

Proof: Consider solutions (z, y)Smn in which M’(l) = 𝑊̂𝑖1, with 𝑊̂𝑀̂ and 𝑖1𝑀̂. By virtue of (z, y)Smn, 

∑ 𝛼𝑖1𝑗𝑘𝑖1

𝑗∈𝑁𝑘𝑖1
(𝑙)

− 𝛽𝑖1𝑘𝑖1
= ∑ (𝛽𝑖̂𝑘𝑖̂

− ∑ 𝛼𝑖̂𝑗𝑘𝑖̂

𝑗∈𝑁𝑘𝑖̂
(𝑙)

)

𝑖̂∈𝑊̂

+ 𝛽0.                                                                      (32) 

In M’(l), if 𝑖1 is replaced by another i𝑀̂ with 𝑁𝑘𝑖
(𝑙) = 𝑁𝑘𝑖1

(𝑙), (32) will hold for each i{M-𝑀̂-i1}. Since 

(14) is minimal, ∑ 𝛼𝑖𝑗𝑘𝑖𝑗∈𝑁𝑘𝑖
(𝑙)  = ∑ 𝛼𝑖1𝑗𝑘𝑖1

𝑗∈𝑁𝑘𝑖1
(𝑙) . Therefore, for each pair {i1, i2}{M-𝑀̂} and 1 ≤ ki ≤ 
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n-1, 𝛽𝑖1𝑘𝑖
= 𝛽𝑖2𝑘𝑖

. It is clear from (32) that for any pair {i1, i2}{M-𝑀̂} and 1 ≤ 𝑘𝑖1
≤ n-1, Co-S(i1-𝑘𝑖1

) = 

Co-S(i2-𝑘𝑖1
). Therefore, for each 1 ≤ ki ≤ n-1, 𝛼𝑖−𝑘𝑖 is equal for all i{M-𝑀̂}.    

It needs to be noted here that unlike in the case of secondary agents, for any pair {𝑖1̂, 𝑖̂2}𝑀̂ and 1 ≤ 𝑘𝑖̂1
 ≤ 

n-1, Co-S(𝑖1̂-𝑘𝑖̂1
) need not equal Co-S(𝑖̂2-𝑘𝑖̂1

). Therefore, 𝛼 𝑖̂1−𝑘𝑖̂1  need not equal 𝛼 𝑖̂2−𝑘𝑖̂2 , where 𝑘𝑖̂1
 = 𝑘𝑖2

. 

Definition 2.4 𝛼𝑚𝑖𝑛𝑖𝑘𝑖
 = MinjN {𝛼𝑖𝑗𝑘𝑖

| for each iM, 1 ≤ ki ≤ n-1}. 

It is clear from Lemma 2.6 that in any minimal, non-trivial facet of H(z, y), since 𝛼𝑖−𝑘𝑖 is equal for all 

i{M-𝑀̂}, 𝛼𝑚𝑖𝑛𝑖1𝑘𝑖
 = 𝛼𝑚𝑖𝑛𝑖2𝑘𝑖

 for each pair {i1, i2}{M-𝑀̂} and 1 ≤ 𝑘𝑖≤ n-1. We proceed to show the 

same for each pair, {𝑖1̂, 𝑖̂2}𝑀̂. 

Lemma 2.7 In any minimal, non-trivial facet of H(z, y), 𝛼𝑚𝑖𝑛𝑖̂1𝑘𝑖̂
= 𝛼𝑚𝑖𝑛𝑖̂2𝑘𝑖̂

 for each pair {𝑖1̂, 𝑖2̂}𝑀̂, 1 

≤ 𝑘𝑖̂ ≤ n-1. 

Proof: We begin with the case for 𝑘𝑖̂ = 1. Consider a lImn in which M’(l) = {𝑖1̂, 𝑖2} with 𝑖1̂𝑀̂, 𝑘𝑖̂1
=1, 

𝑖2{M-𝑀̂} and 𝑘𝑖2
= n-1. If 𝑖1̂ is replaced by a 𝑖̂{𝑀̂-𝑖1̂} in M’(l) with 𝑘𝑖̂ = 1, the resulting solution also 

belongs to Smn. This holds for any 𝑖̂𝑀̂. Let 𝑗𝑖̂(𝑚𝑖𝑛){𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛𝑁𝑖2−𝑘𝑖2

𝑚𝑖𝑛 }. Then, due to Lemma 2.5, a feasible 

solution in which 𝑗𝑖̂(𝑚𝑖𝑛) is assigned to 𝑖,̂ and the rest to 𝑖2 belongs to Smn. Therefore, (𝛽𝑖̂1 − 𝛼𝑖̂𝑗𝑖̂(𝑚𝑖𝑛)1) is 

equal for all 𝑖̂𝑀̂. Since (14) is minimal, 𝛼𝑖̂𝑗𝑖̂(𝑚𝑖𝑛)1 = 𝛼𝑚𝑖𝑛𝑖̂1 is equal for all 𝑖̂𝑀̂. As well, 𝛽𝑖̂1 is equal for 

all 𝑖̂𝑀̂. 

Next, consider a lImn in which M’(l) = {𝑊̂, 𝑖1̂}. Here, for some 𝑖1̂𝑀̂ and 𝑊̂{𝑀̂-𝑖1̂}, 𝑘𝑖̂ = 1 for each 

𝑖̂𝑊̂ and 𝑘𝑖̂1
 = n-|𝑊̂|. Due to Lemma 2.5, there exists a 𝑗𝑖̂(𝑚𝑖𝑛)⋂ 𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛
𝑖̂∈𝑀′(𝑙) . Since (𝛽𝑖̂1 − 𝛼𝑖̂𝑗𝑖̂(𝑚𝑖𝑛)1) is 

equal for all 𝑖̂𝑀̂, replacing 𝑖1̂ with 𝑖2̂{𝑀̂-𝑖1̂} and reconstituting 𝑊̂, with 𝑘𝑖̂2
 = n-|𝑊̂| and 𝑘𝑖̂ = 1 for each 

𝑖̂𝑊̂, the replaced solution also belongs to Smn. Therefore, 

∑ 𝛼𝑖̂1𝑗 𝑘𝑖̂1

𝑗∈𝑁𝑘𝑖̂1
(𝑙)

− 𝛽𝑖̂1 𝑘𝑖̂1
 =  ∑ 𝛼𝑖̂2𝑗 𝑘𝑖̂2

𝑗∈𝑁𝑘𝑖̂2
(𝑙)

− 𝛽𝑖̂1 𝑘𝑖̂2
.                                                                    (33) 

Since (14) is minimal, it follows that 𝛼𝑚𝑖𝑛𝑖̂1𝑘𝑖̂
= 𝛼𝑚𝑖𝑛𝑖̂2𝑘𝑖̂

 for each {𝑖1̂, 𝑖2̂}𝑀̂, n-|𝑀̂|+1 ≤ 𝑘𝑖̂ ≤ n-1. Finally, 

consider an lImn in which M’(l) = {𝑀̂, 𝑖2} with 𝑖2{M-𝑀̂}. Here, there is a designated 𝑖1̂𝑀̂ with 1 ≤ 𝑘𝑖̂1
 

≤ n-|𝑀̂|, 𝑘𝑖̂ = 1 for each 𝑖̂{𝑀̂-𝑖1̂}, and 𝑘𝑖2
 = n-𝑘𝑖̂1

-|𝑀̂|+1. As with (33), ∑ 𝛼𝑖̂1𝑗 𝑘𝑖̂1
𝑗∈𝑁𝑘𝑖̂1

(𝑙) − 𝛽𝑖̂1 𝑘𝑖̂1
is the 

same for all 𝑖1̂𝑀̂, for a given 1 ≤ 𝑘𝑖̂1
 ≤ n-|𝑀̂|. With (14) being minimal, 𝛼𝑚𝑖𝑛𝑖̂1𝑘𝑖̂

= 𝛼𝑚𝑖𝑛𝑖̂2𝑘𝑖̂
 for each 

{𝑖1̂, 𝑖̂2}𝑀̂, 1 ≤ 𝑘𝑖̂ ≤ n-|𝑀̂|.          

From the minimality of non-trivial facet (14) and Lemma 2.7, the following property is immediate. 

Corollary 2.2 In any minimal, non-trivial facet of H(z, y), 𝛽𝑖̂11 = 𝛽𝑖̂21 for each pair {𝑖1̂, 𝑖2̂}𝑀̂. 

Proposition 2.4 In any minimal, non-trivial facet of H(z, y), 𝛼𝑚𝑖𝑛𝑖𝑘𝑖
 = 0, for each iM, 1 ≤ ki ≤ n-1.  
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Proof: To prove, we first show that for each iM, 𝛼𝑚𝑖𝑛𝑖𝑘𝑖
 = 𝛼𝑚𝑖𝑛𝑖 for all 1 ≤ ki ≤ n-1. If so, then due to 

Lemma 2.6 and Lemma 2.7, it follows that 𝛼𝑚𝑖𝑛𝑖𝑘𝑖
 = 𝛼𝑚𝑖𝑛 for each iM, 1 ≤ ki ≤ n-1. If 𝛼𝑚𝑖𝑛 > 0, then 

due to minimality of (14), β = 0, which as per Proposition 2.1 implies that (14) is trivial.  

For 𝑖̂𝑀̂ and a 2 ≤ 𝑘𝑖̂ ≤ n-1, define ∆𝑖̂𝑘𝑖̂
 = 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂

-𝛼𝑚𝑖𝑛𝑖̂1. Consider a (z, y)1Smn in which M’(l1) = {𝑖,̂ 

𝑖1̂}𝑀̂, with 𝑘𝑖̂1
 = 1 and 𝑘𝑖̂ = n-1. Since 𝛼𝑚𝑖𝑛𝑖̂1 = 𝛼𝑚𝑖𝑛𝑖̂11, due to Lemma 2.5, ∆𝑖̂𝑘𝑖̂

 = 𝛼𝑖̂𝑗𝑘𝑖̂
− 𝛼𝑖̂1𝑗1 for 

each jN. Consider first the case of ∆𝑖̂𝑘𝑖̂
>0. Due to minimality of (14), 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂

>0 and 𝛽𝑖̂𝑘𝑖̂
 = 0. Let (z, y)1 

be perturbed to obtain (z, y)2 in which M’(l2) = {𝑖,̂ 𝑖1̂, 𝑖2̂}𝑀̂, with 𝑘𝑖̂1
 = 𝑘𝑖̂2

= 1 and 𝑘𝑖̂ = n-2. Clearly, (z, 

y)2Smn. Therefore, ∆𝑖̂𝑘𝑖̂−1 = 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂−1-𝛼𝑚𝑖𝑛𝑖̂1 = 𝛼𝑖̂𝑗𝑘𝑖̂−1 − 𝛼𝑖̂1𝑗1 for each jN. By substituting (z, y)1 and 

(z, y)2 in (14) respectively, one obtains 

∑ 𝛼𝑖̂𝑗𝑘𝑖̂

𝑗∈𝑁𝑘𝑖̂
(𝑙1)

− 𝛽𝑖̂𝑘𝑖̂
= ∑ 𝛼𝑖̂2𝑗1

𝑗∈𝑁𝑘𝑖̂2
(𝑙2)

− 𝛽𝑖̂21 + ∑ 𝛼𝑖̂𝑗𝑘𝑖̂−1

𝑗∈𝑁𝑘𝑖̂−1(𝑙2)

− 𝛽𝑖̂𝑘𝑖̂−1,                             (34)  

for each selection of 𝑁𝑘𝑖̂
(𝑙1)N with 𝑁𝑘𝑖̂

(𝑙1) = 𝑁𝑘𝑖̂1
(𝑙2)𝑁𝑘𝑖̂−1

(𝑙2). From Lemma 2.7 we have that 

𝛼𝑚𝑖𝑛𝑖̂11 = 𝛼𝑚𝑖𝑛𝑖̂21. Therefore, for (34) to hold, 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂−1>𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂
>0. The above perturbation is repeated 

sequentially wherein the set M’(lk) is expanded recursively by adding 𝑖̂𝑘 is added to it with 𝑘𝑖̂𝑘
=1 while 

reducing the cardinality of 𝑖 ̂by 1. As a result, 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂−1>𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂
>0 holds for n-|𝑀̂|+2 ≤ 𝑘𝑖̂ ≤ n-1. For 2 ≤ 

𝑘𝑖̂ ≤ n-|𝑀̂|+1, let (z, y)kSmn be defined by M’(lk) = 𝑀̂. Here, besides 𝑖,̂ 𝑖̂𝑘{M’(lk)-𝑖}̂ with 𝑘𝑖̂𝑘
 = n-𝑘𝑖̂-|𝑀̂|+2, 

while for each of the remaining, 𝑖𝑙̂{M’(lk)-𝑖𝑘̂-𝑖}̂, 𝑘𝑖̂𝑙
 = 1. Starting with (z, y)kSmn, consider the following 

perturbation. A feasible solution, (z, y)k+1 is constructed by introducing a 𝑖1{M-𝑀̂} in M’(lk) with 𝑘𝑖1
 = 1, 

while the cardinality of 𝑖 ̂becomes 𝑘𝑖̂-1. Clearly, (z, y)k+1Smn. Since both (z, y)k and (z, y)k+1 belong to Smn, 

∑ 𝛼𝑖̂𝑗𝑘𝑖̂

𝑗∈𝑁𝑘𝑖̂
(𝑙𝑘)

− 𝛽𝑖̂𝑘𝑖̂
= ∑ 𝛼𝑖1𝑗1

𝑗∈𝑁𝑘𝑖1
(𝑙𝑘+1)

− 𝛽𝑖11 + ∑ 𝛼𝑖̂𝑗𝑘𝑖̂−1

𝑗∈𝑁𝑘𝑖̂−1(𝑙𝑘+1)

− 𝛽𝑖̂𝑘𝑖̂−1,               (35) 

for each selection of 𝑁𝑘𝑖̂
(𝑙𝑘)N. We know from the proof of Proposition 2.2 that (∑ 𝛼𝑖̂𝑘𝑗1𝑗∈𝑁𝑘𝑖̂𝑙

(𝑙𝑘) − 𝛽𝑖̂𝑘1) 

> (∑ 𝛼𝑖1𝑗1𝑗∈𝑁𝑘𝑖̂𝑙
(𝑙𝑘) − 𝛽𝑖11) for each 𝑁𝑘𝑖̂𝑙

(𝑙𝑘)N. Therefore, for (35) to hold, 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂−1 > 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂
 > 0 for 

2 ≤ 𝑘𝑖̂ ≤ n-|𝑀̂|+1. However, the fact that 𝛼𝑚𝑖𝑛𝑖̂1 > 𝛼𝑚𝑖𝑛𝑖̂2 violates the initial assumption that 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂
 > 

𝛼𝑚𝑖𝑛𝑖̂1. Hence, ∆𝑖̂𝑘𝑖̂
≤0 for 𝑖̂𝑀̂, 2 ≤ 𝑘𝑖̂ ≤ n-1.  

For each i{M-𝑀̂} and 2 ≤ 𝑘𝑖 ≤ n-1, let ∆𝑖𝑘𝑖
 = 𝛼𝑚𝑖𝑛𝑖𝑘𝑖

-𝛼𝑚𝑖𝑛𝑖̂1. Using arguments, similar to that for ∆𝑖̂𝑘𝑖̂
, 

2 ≤ 𝑘𝑖̂ ≤ n-1, it can be shown that ∆𝑖𝑘𝑖
≤0 for i{M-𝑀̂}, 2 ≤ 𝑘𝑖 ≤ n-1. Suppose that ∆𝑖̂𝑘𝑖̂

< 0 for one or more 

𝑖̂𝑀̂, 2 ≤ 𝑘𝑖̂ ≤ n-1. Similarly, let ∆𝑖𝑘𝑖
<0 for i{M-𝑀̂}, 2 ≤ 𝑘𝑖 ≤ n-1.  Then, 𝛼𝑚𝑖𝑛𝑖̂1 > 0 and 𝛽𝑖̂11 = 0. Further, 

𝛼𝑚𝑖𝑛𝑖̂1 ≥ 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂
 for 2 ≤ 𝑘𝑖̂ ≤ n-1, and 𝛼𝑚𝑖𝑛𝑖̂1 ≥ 𝛼𝑚𝑖𝑛𝑖𝑘𝑖

 for each i{M-𝑀̂}, 2 ≤ 𝑘𝑖 ≤ n-1. In such a case, 

set  → -𝛼𝑚𝑖𝑛𝑖̂1 and execute (16a) and (16b) for each jN. Consequently, for some 𝑖̂𝑀̂, 2 ≤ 𝑘𝑖̂ ≤ n-1 and 

i{M-𝑀̂}, 2 ≤ 𝑘𝑖 ≤ n-1, 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂
<0 and 𝛼𝑚𝑖𝑛𝑖𝑘𝑖

<0, respectively. In all such cases, (15a) and (15b) is 

executed by setting  → -𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂
 and 𝛼𝑚𝑖𝑛𝑖̂𝑘𝑖̂

→𝛼𝑚𝑖𝑛𝑖𝑘𝑖
, respectively. After both these transformations, 

β0>0. Otherwise, (14) cannot be valid. Therefore, 𝛼𝑚𝑖𝑛𝑖𝑘𝑖
 = 0, for each iM, 1 ≤ ki ≤ n-1 and the proposition 

holds. If ∆𝑖̂𝑘𝑖̂
=0 for each 𝑖̂𝑀̂, 2 ≤ 𝑘𝑖̂ ≤ n-1, and ∆𝑖𝑘𝑖

=0 for i{M-𝑀̂}, 2 ≤ 𝑘𝑖 ≤ n-1, then as well the 
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proposition holds if 𝛼𝑚𝑖𝑛𝑖̂1 = 0. On the other hand, if 𝛼𝑚𝑖𝑛𝑖̂1 > 0, then (14) reduces to trivial facets as per 

Proposition 2.1.                

An immediate consequence of Proposition 2.4 is that in any non-trivial facet (14), there exists at least one 

𝑗𝑖𝑘𝑖
N, whose potential assignment to i with cardinality 1 ≤ 𝑘𝑖 ≤ n-1, is hidden, i.e., coefficient 𝛼𝑖𝑗𝑖𝑘𝑖

𝑘𝑖
=

𝛼𝑚𝑖𝑛𝑖𝑘𝑖
= 0. What also follows from Lemma 2.5 is that in any non-trivial facet of H(z, y), 𝛼𝑖𝑗𝑘𝑖

 = 0 for 

every j𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛, 1 ≤ 𝑘𝑖 ≤ n-1. In addition, for each lImn associated with a non-trivial facet of H(z, y), (29) 

applies. This suggests that 𝛼𝑖𝑗𝑘𝑖
 = 𝛼0>0 for each j⋂ 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛
𝑖∈𝑀′(𝑙) , lImn associated with a non-trivial facet 

of H(z, y). This greatly simplifies the structure of non-trivial facets of H(z, y). For each lImn, 

∑ ∑ 𝛼0

𝑗∈{𝑁𝑘𝑖
(𝑙)−𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛}𝑖∈𝑀′(𝑙)

=  ∑ 𝛽𝑖𝑘𝑖

𝑖∈𝑀′(𝑙)

+ 𝛽0.                                                                                             (36) 

 Clearly in (36), both 𝛽𝑖𝑘𝑖
 for each i𝑀′(𝑙), and 𝛽0 are multiples of 𝛼0. Finally, 𝛼𝑖𝑗𝑛 = 1, for each iM, 

jN and 𝛽𝑖𝑛 = n-𝛽0, after dividing by 𝛼0. It immediately follows that all non-trivial facets of H(z, y) are 

canonical in which all coefficients of z variables are 0-1, while 𝛽𝑖𝑘𝑖
≥0 and integer for each iM, 1 ≤ ki ≤ n. 

As well, 𝛽0>0 and integer. Thus, the l-h-s of (14) can be viewed as a ‘count’ of jobs whose assignment is 

not hidden (i.e., those whose coefficients equal to 1), while its r-h-s can be viewed as the total cardinality 

provided by agents to ‘match’ the count of non-hidden jobs. With this, we now frame the non-trivial facet 

inequalities of H(z, y) as p-Agent Cardinality Matching inequalities. 

 

3.0 p-Agent Cardinality Matching Inequalities for (Pzy) 

The p-Agent Cardinality Matching inequalities are defined by the set of, a) Wp  M agents with |Wp| = p ≥ 

3, and b) HqN’N jobs. In Di Francesco et. al [15], the Cardinality Matching inequalities with p = 2, has 

been described in some detail. To avoid repetition, we will confine ourself to discussing these inequalities 

with p ≥ 3. For each iWp, a ‘partitioning’ cardinality 2 ≤ k(i) ≤ n-p+1 is defined which partitions the 

cardinalities of i, into two sets: a) 𝐾𝑖
− = {1,..., k(i)-1}, and b) 𝐾𝑖

+= {k(i),…, n-1}. Given a fractional extreme 

solution (z, y)LP(z, y), the sets defined above neatly isolates in (z, y), the fractional part. The fractional 

part is confined to agents iWp and jobs jN’. Thus, for each iWp and jN’, 0 < 𝑦𝑖𝑘𝑖
 < 1 and 0 < 𝑧𝑖𝑗𝑘𝑖

 < 

1 for at least one 1≤ki≤n-1. Furthermore, this segregation is ensured by i) ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1
𝑘𝑖=1𝑖∈𝑊𝑝

= 1, for each 

jN’ and ii) ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1
𝑘𝑖=1𝑖∈{𝑀−𝑊𝑝} = 1 for each j{N-N’}. Finally, the partitioning cardinality k(i) for each 

iWp is identified in the following way. If for an iWp, 0 < 𝑦𝑖𝑘𝑖
 < 1 for exactly one 𝑘𝑖, then either k(i) = 𝑘𝑖 

or k(i)-1 = 𝑘𝑖. If  0 < 𝑦𝑖𝑘𝑖
 < 1 for two or more 𝑘𝑖 values, then the cardinalities associated with the fractional 

y values are evenly distributed between 𝐾𝑖
− and 𝐾𝑖

+.  

The set HqN’ denotes the collection of jobs whose potential assignment to each iWp, either with 

cardinalities, ki𝐾𝑖
+ or ki𝐾𝑖

−, are hidden. In addition, depending on the relative values of |Hq| and p, 

assignments of some jobs j{N-Hq} to iWp may also be hidden. Consequently, the coefficient 𝛼𝑖𝑗𝑘𝑖
= 0, 
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in the p-ACM inequality for each such hidden assignment. The coefficients of all remaining z variables is 

equal to 1. The p-Agent Cardinality Matching (p-ACM) inequalities are broadly classified into two: a) 

Complete p-ACM, in which |N’| = n’ ≥ 2p, and b) Partial p-ACM inequalities in which n’ ≤ 2p-1. We first 

present the Complete p-ACM inequality given its simple structure. The Partial p-ACM inequalities consists 

of two different structures depending on the relative sizes of n’, p and the partitioning cardinalities k(i) for 

each iWp.  

3.1 Complete p-Agent Cardinality Matching Inequalities  

In the Complete p-ACM, the r-h-s parameters of (14) are specified as:  

i) β0 = p-1,            (37a) 

ii) βin = n-p+1 for each iM,        (37b) 

iii) For each iWp, if n-p+1 ≤ ki ≤ n-1, then 𝛽𝑖𝑘𝑖
= 𝑛 − 𝑝, else 𝛽𝑖𝑘𝑖

= 𝑘𝑖 − 1,  (37c) 

iv) For each i{M-Wp}, if ki ≥ n-p, then 𝛽𝑖𝑘𝑖
= 𝑛 − 𝑝, else 𝛽𝑖𝑘𝑖

= 𝑘𝑖.   (37d) 

It is evident from (37a) and (37c) that whenever every agent in Wp is utilized, the r-h-s of Complete p-ACM 

will be n-1. If ki > n-p jobs are assigned to an agent iWp, while the remaining (n-ki) jobs are assigned (n-

ki) agents in {Wp-i}, i.e., ki’ = 1 for each of the (n-ki) agents, then as well the r-h-s is n-1. The same holds if 

ki ≥ n-p jobs are assigned to i{M-Wp}, while the remaining (n-ki) jobs are assigned to (n-ki) agents in Wp. 

In all other feasible instances, the r-h-s is at least n. 

The central idea behind the Complete p-ACM inequality is that, when all agents in Wp are utilized, then its 

l-h-s is at most n-1. This is achieved by ensuring that the assignment of at least one jHq is hidden from 

every iWp and i{M-Wp} in any feasible solution. Let Wq(j)Wp with |Wq(j)| = q, denote a unique selection 

of agents, that is associated with a jHq where 0 ≤ q ≤ p. In Complete p-ACM, the potential assignment of 

a jHq is hidden from: i) each iWq(j), ki𝐾𝑖
−, ii) each i{Wp-Wq(j)}, ki𝐾𝑖

+, and iii) each i{M-Wp}, 1 ≤ 

ki ≤ n-1, provided a feasible solution is possible with such an assignment. Of course, the assignment of a 

jHq to an i with cardinality ki being hidden implies that 𝛼𝑖𝑗𝑘𝑖
= 0. It follows that, |Hq| = ∑ 𝑝𝐶𝑞

𝑝
𝑞=0 = 2p. 

The nomenclature, ‘Complete’, conveys the notion that the partitioning cardinalities k(i) and k(i)-1 across 

all iWp are large enough to be able to assign all 2p jobs in Hq to agents in Wp. To enable this, the Complete 

p-ACM inequality requires that 𝑘𝑚𝑖𝑛 = Min{k(i)|iWp} ≥ ⌊(2𝑝 − 1)/𝑝⌋+1. Therefore, ∑ 𝑘(𝑖)𝑖∈𝑊𝑝
 ≥ 2𝑝+p. 

In addition, n’ = ∑ 𝑘(𝑖)𝑖∈𝑊𝑝
 – r for 1 ≤ r ≤ p-1. This points to feasible solutions in which all jobs in n’ are 

assigned to agents in Wp, wherein for each iWp the active cardinalities are, ki = k(i) or ki = k(i)-1. 

Consider the assignment of jHq to i{Wp-Wq(j)} for a ki𝐾𝑖
+. For q ≤ p–2, a feasible solution with such 

an assignment is possible if 

∑ 𝑘(𝑖′)

𝑖′∈{𝑊𝑝−𝑊𝑞(𝑗)−𝑖}

+ 𝑘𝑖 + 𝑞 ≤ 𝑛.                                                                                                         (38) 
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Note that the l-h-s in (38) represents the sum of k(i’) jobs assigned to each i’{Wp-Wq(j)-i}, one job assigned 

to each agent in Wq(j) amounting to q, and ki jobs assigned to i. Clearly, (38) must be satisfied in any feasible 

solution in which ki jobs are assigned to i with all agents in Wp utilized. Let 𝑘𝑖𝑚𝑎𝑥1(𝑞) = n-q-

∑ 𝑘(𝑖′)𝑖′∈{𝑊𝑝−𝑊𝑞(𝑗)−𝑖} . If ki ≤ 𝑘𝑖𝑚𝑎𝑥1(𝑞), 𝛼𝑖𝑗𝑘𝑖
= 0, else 𝛼𝑖𝑗𝑘𝑖

= 1. In the case of q = p-1, (38) is 

automatically satisfied for each ki ≤ n-p+1. When ki > n-p+1, the remaining n-ki jobs are less than q. Here, 

feasibility is achieved by assigning each of the (n-ki) jobs to (n-ki) agents in Wq(j). Thus, in this case, 𝛼𝑖𝑗𝑘𝑖
=

0 for all ki𝐾𝑖
+. Now consider the assignment of a jHq to i{M-Wp} for which q ≤ p-1. Here, if 

∑ 𝑘(𝑖′)

𝑖′∈{𝑊𝑝−𝑊𝑞(𝑗)}

+ 𝑘𝑖 + 𝑞 ≤ 𝑛,                                                                                                             (39) 

then 𝛼𝑖𝑗𝑘𝑖
= 0, else 𝛼𝑖𝑗𝑘𝑖

= 1. As with (38), satisfaction of (39) implies that a feasible solution is possible 

with assigning jHq to i{M-Wp} for a given ki. Thus, given that 𝑘𝑖𝑚𝑎𝑥2(𝑞) = n-q-∑ 𝑘(𝑖′)𝑖′∈{𝑊𝑝−𝑊𝑞(𝑗)} , if 

ki ≤ 𝑘𝑖𝑚𝑎𝑥2(𝑞), 𝛼𝑖𝑗𝑘𝑖
= 0, else 𝛼𝑖𝑗𝑘𝑖

= 1. The hidden assignments for each jHq are as follows: 

a) assignment of jHq to each iWq(j) with ki ≤ k(i)-1,           (40) 

b) assignment of jHq to each i{Wp-Wq(j)} for k(i) ≤ ki ≤ 𝑘𝑖𝑚𝑎𝑥1(𝑞),          (41)  

c) assignment of jHq to each i{M-Wp}, with 1 ≤ ki ≤ 𝑘𝑖𝑚𝑎𝑥2(𝑞) if q ≤ p-1, else with 1 ≤ ki ≤ n-1.     (42) 

For notational convenience, let 𝐻𝑞
−(𝑙) = {jHq| q = l}. The Complete p-ACM inequality can be stated as 

∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=1𝑗∈{𝑁−𝐻𝑞}𝑖∈𝑀

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑘𝑖∈𝐾𝑖
+𝑗∈𝐻𝑞𝑖∈𝑊𝑞(𝑗)

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑘𝑖∈𝐾𝑖
−𝑗∈𝐻𝑞𝑖∈{𝑊𝑝−𝑊𝑞(𝑗)}

+ ∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=𝑘𝑚𝑎𝑥1(𝑞)+1𝑗∈𝐻𝑞
−(𝑞)

𝑝−2

𝑞=0𝑖∈{𝑊𝑝−𝑊𝑞(𝑗)}

+ ∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=𝑘𝑚𝑎𝑥2(𝑞)+1𝑗∈𝐻𝑞
−(𝑞)

𝑝−1

𝑞=0𝑖∈{𝑀−𝑊𝑝}

+ ∑ ∑ 𝑧𝑖𝑗𝑛

𝑗∈𝑁𝑖∈𝑀

 

≤   ∑ ∑ (𝑘𝑖 − 1)𝑦𝑖𝑘𝑖

𝑛−𝑝

𝑘𝑖=1𝑖∈𝑊𝑝

+ ∑ ∑ (𝑛 − 𝑝)𝑦𝑖𝑘𝑖

𝑛−1

𝑘𝑖=𝑛−𝑝+1𝑖∈𝑊𝑝

+ ∑ ∑ 𝑘𝑖𝑦𝑖𝑘𝑖

𝑛−𝑝−1

𝑘𝑖=1𝑖∈{𝑀−𝑊𝑝}

+ ∑ ∑ (𝑛 − 𝑝)𝑦𝑖𝑘𝑖

𝑛−1

𝑘𝑖=𝑛−𝑝𝑖∈{𝑀−𝑊𝑝}

+ ∑(𝑛 − 𝑝 + 1)𝑦𝑖𝑛

𝑖∈𝑀

+ (𝑝 − 1)                               (43) 

The following example illustrates the construction of the Complete p-ACM inequality. 

Example 3. Consider a (Pzy) with m = 4, n = 12 and Wp = {1, 2, 3}. Since |Wp| = p = 3, |Hq| = 23 = 8. Let Hq 

= {1, 2, …., 8} and k(1) = k(2) = k(3) = 4. Here, W0(1) = , W1(2) = {3}, W1(3) = {2}, W1(4) = {1}, W2(5) 

= {2, 3}, W2(6) = {1, 3}, W2(7) = {1, 2} and W3(8) = {1, 2, 3}. Here, β0 = 2, 𝛼𝑖𝑗12 = 1 for each iM, jN 

and βi12 = 10 for each iM. The remaining β values are: i) for i = 1, 2 and 3, 𝛽𝑖𝑘𝑖
=  𝑘𝑖 − 1, ki = 1,.., 10, 

and 𝛽𝑖𝑘𝑖
=  9, ki = 10, 11, ii) for i = 4, 𝛽4𝑘4

=  𝑘4, for k4 = 1,.., 8, and 𝛽4𝑘4
=  9, k4 = 9, 10 and 11. 
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The following constitute the set of hidden assignments: i) For j = 1, its assignment to each i{1, 2, 3} with 

ki = 4 are hidden. That is because W0(1) = , and therefore as per (38), 𝑘𝑖𝑚𝑎𝑥1(0) = 4 for i = 1, 2 and 3. ii) 

For j = 2, as per (40), its assignment to i = 3 with 1 ≤ k3 ≤ 3 are hidden. Furthermore, 𝑘𝑖𝑚𝑎𝑥1(1) = 7 and 

𝑘𝑖𝑚𝑎𝑥2(1) = 3. Therefore, its assignment to i{1, 2} are hidden for 4 ≤ ki ≤ 7, while its assignment to i = 4 

is hidden for 1 ≤ k4 ≤ 3. Similarly, for j = 3 its assignment to i = 2 is hidden for 1 ≤ k2 ≤ 3, its assignment to 

i{1, 3} are hidden for 4 ≤ ki ≤ 7, while its assignment to i = 4 is hidden for 1 ≤ k4 ≤ 3. For j = 4 its 

assignment to i = 1 with 1 ≤ k1 ≤ 3, to i{2, 3} with cardinalities 4 ≤ ki ≤ 7, and to i = 4 with 1 ≤ k4 ≤ 3, are 

all hidden. iii) For j = 5, as per (40), its assignment to i{2, 3} with 1 ≤ ki ≤ 3, are hidden. For j = 5, 

𝑘𝑖𝑚𝑎𝑥2(2) = 6. Its assignment to i = 1 with 4 ≤ k1 ≤ 11, and to i = 4 with 1 ≤ k4 ≤ 6 are hidden. Similarly, 

for j = 6, its assignment to i{1, 3} with 1 ≤ ki ≤ 3, to i = 2 with 4 ≤ k2 ≤ 11, and to i = 4 with 1 ≤ k4 ≤ 6 are 

hidden. For j = 7, its assignment to i{1, 2} with 1 ≤ ki ≤ 3, to i = 3 with 4 ≤ k3 ≤ 11, and to i = 4 with 1 ≤ 

k4 ≤ 6 are hidden. For j = 8, its assignment to i{1, 2, 3} with 1 ≤ ki ≤ 3, and to i = 4 with 1 ≤ k4 ≤ 11, are 

hidden.                            

Proposition 3.1 Every (z, y)H(z, y) satisfies the Complete p-Agent Cardinality Matching inequality (43). 

Proof: To begin with, it is worth noting that in any given (z, y)H(z, y), the corresponding l-h-s of (43) is 

at most n. Clearly, the m solutions: yin = 1, zijn = 1 for each jN, satisfy (43) as an equality. All remaining 

feasible solutions in (Pzy) consist of active agents |M’(l)| ≥ 2.  

I) Consider feasible solutions in which, i) |M’(l)Wp| < p, ii) ki < n-p+1 for each i{M’(l)Wp} and 

iii) ki < n-p for each iM’(l){M-Wp}. Therefore, the r-h-s of (43), ∑ (𝑘𝑖 −𝑖∈{𝑀′(𝑙)∩𝑊𝑝}

1)+∑ 𝑘𝑖𝑖∈{𝑀′(𝑙)∩{𝑀−𝑊𝑝}} +(p-1) ≥ n. Hence, for such solutions, (43) is satisfied. 

II) Consider feasible solutions in which for some i{M’(l)Wp}, ki ≥ n-p+1. For such solutions, the r-

h-s of (43) will be n-1 only when the remaining n-ki jobs are assigned to n-ki agents in {Wp-i}. There 

exists a jHq with Wq(j) = {Wp-i}. Its assignment to i with ki ≥ k(i) and to each i’{Wp-i} with ki’ ≤ 

k(i’)-1 are hidden. This results in the l-h-s of (43) being at most n-1, thereby satisfying it.  

III) Consider feasible solutions in which for a iM’(l) {M-Wp}, ki ≥ n-p. Here, the r-h-s of (43) will 

be n-1, only if the remaining n-ki jobs are assigned to n-ki agents in Wp. Since n-ki ≤ p, such an 

assignment is possible. The assignment of jHq for which Wq(j) = Wp, is hidden from i{M-Wp} 

with ki ≥ n-p and from each i’Wp with ki’ ≤ k(i’)-1. Therefore, here as well the l-h-s of (43) is at 

most n-1, resulting in (43) being satisfied. 

IV) Finally, consider feasible solutions in which |M’(l)Wp| = p. The r-h-s of (43) corresponding to 

such solutions is n-1. In each such solution, there exists a VpWp with |Vp| = q, in which, i) for each 

iVp, ki ≤ k(i)-1, ii) for each i{Wp-Vp} k(i) ≤ ki ≤ kimax1(q), and iii) for each i{M’(l)-Wp} 1 ≤ ki ≤ 

kimax2(q). However, associated with each such solution, there exists a jHq whose assignment to 

agents, iVp, ki ≤ k(i)-1, i{Wp-Vp} k(i) ≤ ki ≤ kimax1(q), and i{M’(l)-Wp}, 1 ≤ ki ≤ kimax2(q) are 

hidden. Thus, corresponding to these solutions as well, the l-h-s of (43) is at most n-1.  

Theorem 3.1 The Complete p-Agent Cardinality matching inequality (43) is a non-trivial facet of H(z, y). 
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Proof: As per Proposition 2.2, non-trivial facets of H(z, y) are constructed around 𝑀̂  M, with |𝑀̂| ≥ 2. In 

(43), Wp  M, with p ≥ 2, and therefore non-trivial facets of H(z, y) can be defined by setting 𝑀̂ = Wp. From 

our discussion in Section 2.2, in any non-trivial facet of H(z, y), 𝛼𝑖𝑗𝑘𝑖
=0 for each j𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛, while 𝛼𝑖𝑗𝑘𝑖
=1 

for each j{N-𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛}, iM, 1 ≤ ki ≤ n-1. In addition, due to Lemma 2.6, 𝛽𝑖𝑘𝑖
 = 𝛽𝑘𝑖

 for all i{M-Wp}. As 

well, since 𝛼𝑖̂𝑗𝑘𝑖̂
=0 for each j𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛, due to minimality of non-trivial facets, 𝛽𝑖̂𝑘𝑖̂
 = 𝛽̂𝑘𝑖̂

 for all 𝑖̂Wp, for 

each 1 ≤ 𝑘𝑖̂ ≤ n-1. Thus, all minial, non-trivial facets of H(z, y) take the form: 

∑ ∑ ∑ 𝑧𝑖̂𝑗𝑘𝑖̂

𝑛−1

𝑘𝑖̂=1𝑗∈{𝑁−𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛}𝑖̂∈𝑊𝑝

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=1𝑗∈{𝑁−𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛}𝑖∈{𝑀−𝑊𝑝}

+ ∑ ∑ 𝑧𝑖𝑗𝑛

𝑗∈𝑁𝑖∈𝑀

≤ ∑ ∑ 𝛽̂𝑘𝑖̂

𝑛−1

𝑘𝑖̂=1𝑖̂∈𝑊𝑝

𝑦𝑖̂𝑘𝑖̂
+ ∑ ∑ 𝛽𝑘𝑖

𝑛−1

𝑘𝑖=1𝑖∈{𝑀−𝑊𝑝}

𝑦𝑖𝑘𝑖
+ 𝛽0.                                                               (44) 

In (43), for each 𝑖̂ ∈ 𝑊𝑝, if 𝑘𝑖̂𝐾𝑖̂
− then 𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛 = {jHq| 𝑖̂Wq(j)}, while if 𝑘𝑖̂𝐾𝑖̂
+ then 𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛 = {jHq| 

𝑖̂{Wp-Wq(j)} and 𝑘(𝑖̂) ≤ 𝑘𝑖̂≤ kimax1(q)}. For each i{M-Wp}, 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛 = {jHq| 1 ≤ ki ≤ kimax2(q)}. Thus, as 

with (44), neither 𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛 nor 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛 in (43) are null.  

Assume that (43) is not a facet. Therefore, there exists a non-trivial facet (44), comprising of sets, Wp, 𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛 

for 𝑖̂ ∈ 𝑊𝑝, 1 ≤ 𝑘𝑖̂ ≤ n-1, and 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛 for i{M-Wp}, 1 ≤ ki ≤ n-1, that are identical to that in (43). Let F(z, y) 

= {(z, y)H(z, y)| (44) is satisfied as an equality}, while G(z, y) = {(z, y)H(z, y)| (43) is satisfied as an 

equality}. Since (44) is a facet while (43) is not, G(z, y)  F(z, y). Thus, if (z, y)G(z, y), then (z, y)F(z, 

y) as well. In the arguments to follow, we examine a set of integer solutions (z, y)G(z, y), using which 

(44) is shown to be a scalar multiple of (43). That being so, the only way (43) is not a facet is if one or more 

sets 𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛 and 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛 in (44) are strict subsets of corresponding sets in (43). Using sequential lifting, 

coefficients 𝛼𝑖̂𝑗𝑘𝑖̂
 for each 𝑖̂ ∈ 𝑊𝑝, 1 ≤ 𝑘𝑖̂ ≤ n-1, j𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛, as well as 𝛼𝑖𝑗𝑘𝑖
 for each i{M-Wp}, 1 ≤ ki ≤ n-1, 

j𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛, are attempted to be lifted. If after lifting, all these coefficients remain zero, then (43) is indeed a 

non-trivial facet of H(z, y). 

The following are the set of integer solutions (z, y)H(z, y), referred to above: 

a) (z, y)1: 𝑦𝑖𝑘𝑖
= 1, for some i{M-Wp}, n-p ≤ ki ≤ n-1, 𝑦𝑖̂1 = 1 for each 𝑖̂Mp, MpWp and |Mp| = n-ki. 

b) (z, y)2: 𝑦𝑖̂1𝑘𝑖̂1
= 1, 𝑖1̂Wp, n-p+1 ≤ 𝑘𝑖̂1

 ≤ n-1, 𝑦𝑖̂1 = 1 for each 𝑖̂Mp, Mp {Wp-𝑖1̂} and |Mp| = n-𝑘𝑖̂1
. 

d) (z, y)3: For some 0 ≤ q ≤ p-1 with a selection of Wq(j*)Wp in which |Wq(j*)| = q, 𝑦𝑖̂𝑘(𝑖̂)−1= 1 for each 

𝑖̂Wq(j*), 𝑦𝑖̂𝑘(𝑖̂) = 1 for each 𝑖̂{Wp-Wq(j*)}, and 𝑦𝑖𝑘𝑖
= 1 for some i{M-Wp}, where 𝑘𝑖 = n -

∑ 𝑘(𝑖)̂𝑖̂∈{𝑊𝑝−𝑊𝑞(𝑗∗)}  - ∑ (𝑘(𝑖)̂ − 1)𝑖̂∈𝑊𝑞(𝑗∗) . 

We first show that (z, y)sG(z, y), s = 1,.., 3. It is readily apparent that the r-h-s of (43) obtained by 

substituting each (z, y)s, s = 1,.., 3 in it is (n-1). In the case of (z, y)1, let j*Hq denote the job for which 

|Wq(j*)| = q = p, and whose assignment to each 𝑖̂Wp with cardinality 𝑘𝑖̂𝐾𝑖̂
−, and to each i{M-Wp} with 

n-p ≤ ki ≤ n-1 is hidden. In (z, y)1, j* and all the remaining jobs j{Hq-j*} are assigned to i{M-Wp} with 
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n-p ≤ ki ≤ n-1, while all j{N-Hq} are assigned to the remaining slots in i-ki and to each 𝑖̂Wp. Since n ≥ 

|Hq|+p, such an assignment is possible. For each j{Hq-j*}, |Wq(j)| ≤ p-1 and therefore its associated 

𝑘𝑖𝑚𝑎𝑥2(𝑞) ≤ n-p-1. This implies that the assignment of no job j{Hq-j*} is hidden from any i{M-Wp} 

with n-p ≤ ki ≤ n-1. On the other hand, the assignment of j* is hidden from precisely those agent-cardinality 

sets that are active in (z, y)1. Thus the l-h-s of (43) is exactly n-1. In (z, y)2 there exists a j*Hq whose 

|Wq(j*)| = p-1, and whose assignment to 𝑖1̂Wp, n-p+1 ≤ 𝑘𝑖̂1
 ≤ n-1, and each 𝑖̂{Wp-𝑖1̂} with 𝑘𝑖̂𝐾𝑖̂

− is 

hidden. In (z, y)2, all jHq including j* is is assigned to 𝑖1̂. Since n ≥ |Hq|+p, such an assignment is possible. 

Clearly, all j{Hq-j*} for which 𝑖1̂Wq(j), its assignment to 𝑖1̂ with 𝑘𝑖̂1
 ≥ n-p+1 is not hidden. Next, all jobs 

j{Hq-j*} for which 𝑖1̂Wq(j), its |Wq(j)| = q ≤ p-2. For such jobs, it follows from (38) that 𝑘𝑖𝑚𝑎𝑥1(𝑞) ≤ n-

p and therefore their assignment to 𝑖1̂ with 𝑘𝑖̂1
 ≥ n-p+1 is not hidden. The remaining jobs {N-Hq} along 

with j* are assigned to the remaining slots in 𝑖1̂ and to each 𝑖̂Mp, Mp = {Wp-𝑖1̂}. Since only the assignment 

of j* is hidden in (z, y)2, the l-h-s of (43) is exactly n-1. 

In (z, y)3, the jHq, whose |Wq(j)| = p, be assigned to an 𝑖̂{Wp-Wq(j*)}. Each jHq for which |Wq(j)| = p-1 

is assigned to a 𝑖̂Wq(j), all with cardinalities of 𝑘𝑖̂𝐾𝑖̂
−. That jHq for which q = 0, is assigned to a 𝑖̂Wq(j*) 

with a cardinality of 𝑘(𝑖)̂-1. None of these assignments are hidden. The remaining jobs in Hq with 1 ≤ q ≤ 

p-2, are assigned as follows. For a j{Hq-j*}, if there exists a 𝑖̂Wq(j) such that 𝑖̂Wq(j*), then j is assigned 

to 𝑖 ̂with cardinality 𝑘(𝑖)̂. If such an agent does not exist, then there must a 𝑖̂Wq(j) such that 𝑖̂Wq(j*), in 

which case j is assigned to 𝑖 ̂with 𝑘𝑖̂ = 𝑘(𝑖)̂-1. This ensures that none of these assignments are hidden. 

Furthermore, since ∑ 𝑘(𝑖)𝑖∈𝑊𝑝
 ≥ |Hq|+p, such an assignment is definitely possible. Finally, all jobs in {N-

Hq}, along with j* are assigned to remaining slots in Wp and i{M-Wp}. Therefore, associated with (z, y)3, 

the l-h-s of (43) is exactly equal to n-1. Thus, (z, y)s for s = 1,…, 3 all belong to G(z, y). 

Consider an instance of (z, y)1G(z, y), in which ki = n-1, |Mp| = 1 and 𝑖1̂Mp. Substituting this solution in 

(44), one obtains its r-h-s to be, 𝛽𝑖̂11+𝛽𝑖,𝑛−1+𝛽0. Due to Corollary 2.2 and Lemma 2.6, 𝛽𝑖̂1 will be referred 

to as 𝛽̂1, for each 𝑖̂Wp and 𝛽𝑖𝑘𝑖
 as 𝛽𝑘𝑖

 for each i{M-Wp}, respectively. Since (z, y)1G(z, y), the l-h-s of 

(44) is n-1, where j*Hq corresponds to |Wq(j*)| = p. This solution is perturbed by introducing another 

𝑖̂{Wp-Mp} with a cardinality of 1 while reducing the cardinality ki to n-2. The perturbed solution also 

belongs to G(z, y). Consequently, with the perturbed solution, the l-h-s remains n-1, and the r-h-s of (44) 

becomes 2𝛽̂1+𝛽𝑛−2+𝛽0. Therefore, 𝛽̂1+𝛽𝑛−1+𝛽0 = 2𝛽̂1+𝛽𝑛−2+𝛽0, resulting in 𝛽𝑛−2=𝛽𝑛−1-𝛽̂1. By 

sequentially introducing a 𝑖̂{Wp-Mp} and reducing the cardinality of ki by 1, one obtains 

𝛽𝑛−𝑙 =  𝛽𝑛−𝑙+1 −  𝛽̂1, 𝑙 = 2, … , 𝑝.                                                                                                                  (45) 

Perturbing (z, y)2 in a similar way, one obtains the result 

𝛽𝑖̂,𝑛−𝑙 =  𝛽𝑖̂,𝑛−𝑙+1 −  𝛽̂1, 𝑙 = 2, … , 𝑝 − 1.                                                                                                          (46) 

Since the l-h-s of (44) remains n-1 both for (z, y)1 and (z, y)2, 𝛽𝑖̂,𝑛−𝑙 = 𝛽̂𝑛−𝑙 = 𝛽𝑛−𝑙, for l = 2,…, p-1.  
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Now consider an instance of (z, y)1G(z, y) in which ki = n-p and Mp = Wp. This solution is perturbed by 

introducing i’{M-Wq-i} with ki’ = 1, while reducing the cardinality ki = n-p-1. The job that was assigned 

to i in (z, y)1 is now assigned to i’. The perturbed solution belongs to G(z, y) as well with the same j*Hq 

being hidden from all active agents in both solutions. Therefore, with both solutions, the l-h-s of (44) 

remains n-1, and 𝛽𝑛−𝑝−1 = 𝛽𝑛−𝑝-𝛽1. This result can be generalized by progressively transferring jobs 

assigned to i, to a new agent i’{M-Wq}. Thus, 𝛽𝑘𝑖−1 = 𝛽𝑘𝑖
-𝛽1, for each p ≤ ki ≤ n-p-1. Now consider a 

variant of (z, y)1G(z, y) in which q = p with 𝑦𝑖̂𝑘(𝑖̂)−1= 1 for each 𝑖̂Wp. Here, for some i{M-Wp}, ki = n-

∑ (𝑘(𝑖)̂ − 1)𝑖̂∈𝑊𝑝
 ≥ p. Here as well, by introducing a i’{M-Wq-i} with ki’ = 1, and reducing the cardinality 

ki by 1, we obtain the result 𝛽𝑘𝑖
= 𝛽𝑘𝑖+1 − 𝛽1, for 1 ≤ ki ≤ n-∑ (𝑘(𝑖)̂ − 1)𝑖̂∈𝑊𝑝

. Thus, in addition to (45), the 

general result is 

𝛽𝑘𝑖
= 𝛽𝑘𝑖+1 − 𝛽1, 𝑘𝑖 = 1, … . , 𝑛 − 𝑝 − 1.                                                                                                     (47) 

Now consider a (z, y)3G(z, y) in which 𝑘𝑖̂1
 = n-p+1 and Mp  = {Wp-𝑖1̂} with 𝑦𝑖̂1 = 1 for each 𝑖̂Mp. This 

solution is perturbed by reassigning a job j that was assigned to 𝑖1̂ to an i{M-Wp}, to obtain another (z, 

y)3G(z, y). In this solution, 𝑘𝑖̂1
 = n-p and ki = 1. In both solutions, the same j*Hq is hidden from all active 

agents and therefore the l-h-s values in (44) remain unchanged. Consequently, 𝛽̂𝑛−𝑝+1 = 𝛽𝑖̂1𝑛−𝑝+𝛽1. Note 

that this relationship holds for every 𝑖1̂Wp. Hence, 𝛽̂𝑛−𝑝+1 = 𝛽̂𝑛−𝑝+𝛽1. This process of perturbation can 

be generalized, wherein there exists a (z, y)3G(z, y) in which 2 ≤ 𝑘𝑖̂1
≤ n-p. This solution is perturbed by 

reassigning jobs that was assigned to 𝑖1̂ to an unassigned agent i’{M-Wp}. Consequently, in the perturbed 

solution, 𝑘𝑖̂1
 → 𝑘𝑖̂1

-1, and ki’ = 1. Such perturbations provide us with the result, 

𝛽̂𝑘𝑖̂1
 = 𝛽̂𝑘𝑖̂1

+1- 𝛽1, for 1 ≤ 𝑘𝑖̂1
 ≤ n-p.            (48) 

Based on (47) and (48), it is clear that regardless of whether (z, y)1, (z, y)2 or (z, y)3 is substituted in (44), its 

r-h-s is 

𝑝𝛽̂1 + (𝑛 − 𝑝)𝛽1 + 𝛽0 = 𝑛 − 1.                                                                                                                      (49) 

If in (z, y)1, 𝑖 ̂ is replaced by i’{M-Wp-i}, with yi’1 = 1, the resulting solution satisfies (44) as a strict 

inequality. This suggests that 𝛽1 > 𝛽̂1. That being so, 𝛽̂1 = 𝛽1-1, with 1 > 0. Therefore, 

𝑛𝛽1 − 𝑝∆1 + 𝛽0 = 𝑛 − 1.                                                                                                                                (50) 

Clearly, 𝛽1 ≥ ∆1> 0 and 𝛽0>0 and integer. Since n > p and 𝛽0>0, 𝛽1 = 1. Otherwise, (50) cannot be satisfied. 

Therefore, ∆1 = 1 and 𝛽0 = p-1. Thus, (44) is identical to (43), provided one or more sets, 𝑁𝑖̂−𝑘𝑖̂

𝑚𝑖𝑛 and 𝑁𝑖−𝑘𝑖

𝑚𝑖𝑛 

in (44) are not a subset of equivalent sets in (43). If in fact that is the case, sequential lifting is performed 

to lift each of the coefficients of variables that correspond to assignments that are hidden in (43). Let α’z ≤ 

β’y+(p-1) denote a compact representation of (43), and WHK = {i-j-ki| iM, jN, 1 ≤ ki ≤ n-1, 𝛼𝑖𝑗𝑘𝑖
= 0 in 

(43)}. To lift the coefficient of 𝑧𝑖′𝑗′𝑘
𝑖′

 whose (i’-j’-ki’)WHK, the optimization problem solved is: 

𝛼𝑖′𝑗′𝑘
𝑖′

 = Min {β’y+(p-1) - α’z| (4)-(9), 𝑧𝑖′𝑗′𝑘
𝑖′

= 1}.         (51) 
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Note that since (43) is a valid inequality, β’y+(p-1)-α’z ≥ 0 for every (z, y)H(z, y). Furthermore, solutions 

(z, y)s, s = 1,.., 3 satisfy (43) as an equality. Hence, regardless of the order in which indices i’-j’-ki’ in WHK 

are considered, 𝛼𝑖′𝑗′𝑘
𝑖′

 = 0, for all (i’-j’-ki’)WHK. Thus, (43) is a non-trivial facet of H(z, y).   

We now shift our attention to identifying fractional solutions of LP(z, y) (defined in (11)), that violate 

inequality (43). In fact, the fractional solutions that we identify violate (43) by the maximum possible 

amount of 1. Fractional solutions (z, y)fLP(z, y) are defined by M’M and N’N as follows:  

i) 0 < 𝑦𝑖𝑘̂𝑖−1 = 𝑦̂𝐾𝐿
 < 1, 0 < 𝑦𝑖𝑘̂𝑖

= 𝑦̂𝐾𝑈
 < 1 and 𝑦̂𝐾𝐿

+ 𝑦̂𝐾𝑈
 = 1, for each iM’,  (52a) 

ii)  𝑧𝑖𝑗𝑘̂𝑖−1 < 1 and 𝑧𝑖𝑗𝑘̂𝑖
< 1 for each iM’, jN’,     (52b) 

iii)  ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1
𝑘𝑖=1𝑖∈𝑀′  = 1 for each jN’,       (52c) 

iv)  ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1
𝑘𝑖=1𝑖∈𝑀′  = 0 for each j{N-N’}.      (52d) 

The conditions in (52a) and (52b) highlight the fractional y values in (z, y)f, and that all agents iM’ are 

fully utilized. Condition (52c) suggests that each jN’ is ‘assigned’ entirely to agents in M’ albeit 

fractionally, while (52d) suggests that each job in {N-N’} is ‘assigned’ entirely to agents in {M-M’}. For 

(z, y)f to violate (43), we set Wp → M’ and k(i) → 𝑘̂𝑖 for each iM’. From (52c) and (52d), we obtain,  

∑ ((𝑘̂𝑖 − 1)𝑦̂𝐾𝐿
+ 𝑘̂𝑖𝑦̂𝐾𝑈

)

𝑖∈𝑀′

= 𝑛′.                                                                                                                 (53) 

Since 𝑦̂𝐾𝐿
+ 𝑦̂𝐾𝑈

 = 1 and m’ = p, (53) reduces to ∑ 𝑘̂𝑖𝑖∈𝑀′ = 𝑛′ + 𝑝𝑦̂𝐾𝐿
. Both n’ and 𝑘̂𝑖 for each iM’ being 

positive integers, it follows that 𝑟 =  𝑝𝑦̂𝐾𝐿
is a positive integer as well. With 0 < 𝑦̂𝐾𝐿

 < 1, p-1 distinct 

fractional solutions are possible, one for each value of 1 ≤ r ≤ p-1. Thus, for each 1 ≤ r ≤ p-1,  𝑦𝑖𝑘̂𝑖−1 =

𝑦̂𝐾𝐿
= 𝑟/𝑝 and 𝑦𝑖𝑘̂𝑖

= 𝑦̂𝐾𝑈
= (𝑝 − 𝑟)/𝑝 for each iM’. Consequently, the r-h-s of (43) is n-1. 

The z values in (z, y)f can be viewed as flows in a directed bipartitite network consisting of nodes in [𝑀𝑘̂−1
′ , 

𝑀𝑘̂
′ , N’] and arcs in 𝐴𝑚′𝑛′. Each arc (r, s)𝐴𝑚′𝑛′ has r{𝑀𝑘̂−1

′ , 𝑀𝑘̂
′ } and sN’. Nodes in 𝑀𝑘̂−1

′  and 𝑀𝑘̂
′  

represent agent-cardinality combinations defined as, 𝑀𝑘̂−1
′  = {i-(𝑘̂𝑖-1)| iM’} and 𝑀𝑘̂

′  = {i-𝑘̂𝑖| iM’}, 

respectively. Thus, |𝑀𝑘̂−1
′ | = |𝑀𝑘̂

′ | = p. Each i-(𝑘̂𝑖-1)𝑀𝑘̂−1
′  and i-𝑘̂𝑖𝑀𝑘̂

′  provides a ‘supply’ of (𝑘̂𝑖 − 1)𝑟/𝑝 

and 𝑘̂𝑖(𝑝 − 𝑟)/𝑝 units, respectively. Each jN’ has a ‘demand’ of 1. It follows from (53) that the total 

supply provided by nodes in 𝑀𝑘̂−1
′  and 𝑀𝑘̂

′  equals the total demand required of nodes in N’. One set of arcs 

in 𝐴𝑚′𝑛′ that emanate from i-(𝑘̂𝑖-1) has a capacity of 𝑦̂𝐾𝐿
. The other set of arcs that emanate from i-𝑘̂𝑖 has 

a capacity of 𝑦̂𝐾𝑈
 each. Thus, each arc in 𝐴𝑚′𝑛′ represents potential unhidden assignments of jobs in N’ to 

agents in M’ with a cardinality of either (𝑘̂𝑖-1) or 𝑘̂𝑖. Note that the assignment of each jHq is hidden from 

|Wq(j)| = q agent-cardinality combinations in 𝑀𝑘̂−1
′  and |M’-Wq(j)| = p - q agent-cardinality combinations in 

𝑀𝑘̂
′ . Thus, q arcs from 𝑀𝑘̂

′  and (p – q) arcs from 𝑀𝑘̂−1
′  enter each jHq, amounting to p arcs, while 2p arcs 

enter each j{N’-Hq}. Recall that for a given 0 ≤ q ≤ p, there are 𝑝𝐶𝑞 unique selections of Wq(j)M’, each 

associated with a jHq. Let 𝑗𝑞(𝑙)Hq, where l = 1,…, 𝑝𝐶𝑞, denote a job whose assignment is hidden from 

each iWq(𝑗𝑞(𝑙)) with ki ≤ k(i)-1 and each i{Wp-Wq(𝑗𝑞(𝑙))} with ki ≥ k(i). Therefore, the total number of 

arcs leaving each i-𝑘̂𝑖𝑀𝑘̂
′  and entering 𝑗𝑞(𝑙)Hq, for a given 1 ≤ q ≤ p-1, is 𝑝 − 1𝐶𝑞−1. The total number 
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of arcs leaving each i-(𝑘̂𝑖-1)𝑀𝑘̂−1
′  and entering nodes 𝑗𝑞(𝑙)Hq, is 𝑝 − 1𝐶𝑝−𝑞. For q = 0, one arc leaves 

each i-(𝑘̂𝑖-1)𝑀𝑘̂−1
′  and enters one node 𝑗0(1), and for q = p, one arc leaves each i-𝑘̂𝑖𝑀𝑘̂

′  and enters 𝑗𝑝(1). 

Let, i) 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 = (𝑘̂𝑖 − 1)𝑦̂𝐾𝐿
 and 𝑅_𝐶𝑎𝑝𝑘̂𝑖

 = 𝑘̂𝑖𝑦̂𝐾𝑈
, represent the available capacity at each i-(𝑘̂𝑖-

1)𝑀𝑘̂−1
′  and i-𝑘̂𝑖𝑀𝑘̂

′ , respectively, and ii) N”N’ denote the currently unassigned jobs in N’. The 

following algorithm, specifies the z variables representing flows between {𝑀𝑘̂−1
′ , 𝑀𝑘̂

′ } and N’. 

Algorithm_z{M’, N’}: 

I. Set N” → N’. 

II. For each iM’, if 𝑘̂𝑖>𝑘𝑚𝑖𝑛, do the following: i) Select Ns(i) = {j{N”-Hq}| |Ns(i)| = (𝑘̂𝑖-𝑘𝑚𝑖𝑛)}, 

ii) Set a) 𝑧𝑖𝑗𝑘̂𝑖−1 → 𝑦̂𝐾𝐿
 for each jNs(i), b) 𝑧𝑖𝑗𝑘̂𝑖

 → 𝑦̂𝐾𝑈
 for each jNs(i), c) 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1→ 

𝑅_𝐶𝑎𝑝𝑘̂𝑖−1- |Ns(i)|𝑦̂𝐾𝐿
, 𝑅_𝐶𝑎𝑝𝑘̂𝑖

→ 𝑅_𝐶𝑎𝑝𝑘̂𝑖
- |Ns(i)|𝑦̂𝐾𝑈

, and c) N” → N”- Ns(i). 

III. For each jHq, do the following: i) If |Wq(j)| = q = 0, then set a) 𝑧𝑖𝑗0
∗(1)𝑘̂𝑖−1 → 1/𝑝 for each 

iM’, and b) 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1→ 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 − 1/𝑝 for each i-(𝑘̂𝑖-1)𝑀𝑘̂−1
′ . ii) If |Wq(j)| = q = p, 

then set a) 𝑧𝑖𝑗𝑝
∗ (1)𝑘̂𝑖

→ 1/𝑝 for each iM’, b) 𝑅_𝐶𝑎𝑝𝑘̂𝑖
→ 𝑅_𝐶𝑎𝑝𝑘̂𝑖

− 1/𝑝 for each i-𝑘̂𝑖𝑀𝑘̂
′ . iii) 

If 1 ≤ |Wq(j)| = q ≤ p-1, then for each l = 1,…, 𝑝𝐶𝑞, a) 𝑧𝑖𝑗𝑞
∗(𝑙)𝑘̂𝑖−1 → 𝑦̂𝐾𝐿

(𝑝 − 𝑞)⁄ , 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1→ 

𝑅_𝐶𝑎𝑝𝑘̂𝑖−1-𝑦̂𝐾𝐿
(𝑝 − 𝑞)⁄  for each i{M’-Wq(𝑗𝑞

∗(𝑙))}, b) 𝑧𝑖𝑗𝑞
∗(𝑙)𝑘̂𝑖

→ 𝑦̂𝐾𝑈
𝑞⁄ , 𝑅_𝐶𝑎𝑝𝑘̂𝑖

→ 

𝑅_𝐶𝑎𝑝𝑘̂𝑖
-𝑦̂𝐾𝑈

𝑞⁄  for each iWq(𝑗𝑞
∗(𝑙)). 

IV. Set N” → N”-Hq. 

V. If 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1> 0, then, i) select Ns = {jN”| |Ns| = p(𝑅_𝐶𝑎𝑝𝑘̂𝑖−1)}, ii) Set 𝑧𝑖𝑗𝑘̂𝑖−1 → 1/𝑝 for 

each jNs, i-(𝑘̂𝑖-1)𝑀𝑘̂−1
′ , and iii) N” → {N”-Ns}. 

VI. If 𝑅_𝐶𝑎𝑝𝑘̂𝑖
>  0, then, i) set Ns = N”, ii) Set 𝑧𝑖𝑗𝑘̂𝑖

→ 1/𝑝 for each jNs, i-𝑘̂𝑖𝑀𝑘̂
′ . 

Note that by definition, 𝑘𝑚𝑖𝑛 = Min{k(i)| iM’} ≥ ⌈|𝐻𝑞|/𝑝⌉+1. Therefore, ∑ (𝑘̂𝑖 − |𝑁𝑠(𝑖)|)𝑖∈𝑀′  = p𝑘𝑚𝑖𝑛 ≥ 

|Hq|+p, implying that in step II of Algorithm_z{M’, N’}, it is possible to extract Ns(i) from {N’-Hq} for each 

iM’. Observe as well that the z values in step III are set such that, i) the total flow into each jHq is equal 

to 1, and ii) the flow on each arc satisfies its arc capacity. Finally, since 𝑘𝑚𝑖𝑛 ≥ ⌈|𝐻𝑞|/𝑝⌉+1, 

p(𝑅_𝐶𝑎𝑝𝑘̂𝑖−1+𝑅_𝐶𝑎𝑝𝑘̂𝑖
) = p𝑘𝑚𝑖𝑛- r > |Hq|. Thus, there is sufficient capacity at 𝑀𝑘̂−1

′  and 𝑀𝑘̂
′  to 

accommodate all jobs in Hq. With this, the r-h-s of (43) takes on a value of n-1. Since the z values associated 

with each hidden assignment equal to zero, (z, y)f constructed above violates (43) by the maximum amount 

of 1. The following example illustrates the fractional part of (z, y)f described above. 

Example 4. Consider first an instance of (z, y)f in which M’ = {1, 2, 3}, N’ = {1,….., 12} and Hq = {1,…, 

8}. Jobs jHq follow the ordering: 𝑗0(1) = 1, 𝑗1(1) = 2, 𝑗1(2) = 3, 𝑗1(3) = 4, 𝑗2(1) = 5, 𝑗2(2) = 6, 𝑗2(3) = 

7, 𝑗3(1) = 8. Here, p = 3, with 𝑘̂1 = 5, 𝑘̂2 = 4 and 𝑘̂3 = 4. Since n’ = 12 it follows that r = 1 and the y values 

in (z, y)f are, 𝑦15 = 𝑦24 = 𝑦34 = 2/3, 𝑦14 = 𝑦23 = 𝑦33 = 1/3. In this example, 𝑘̂𝑚𝑖𝑛 = 4. In step II, 𝑧194 = 1/3 

and 𝑧195 = 2/3. On completion of step II, 1, 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 = (𝑘̂𝑚𝑖𝑛 − 1)𝑟/𝑝 = 1 for each i-(𝑘̂𝑖-1)𝑀𝑘̂−1
′ , and 

𝑅_𝐶𝑎𝑝𝑘̂𝑖
= 𝑘𝑚𝑖𝑛(𝑝 − 𝑟)/𝑝 = 8/3 for each i-𝑘̂𝑖𝑀𝑘̂

′ . In step III, i) for q = 0, 𝑧114 = 𝑧213 = 𝑧313 = 1/3, ii) for 

q = 3, 𝑧185 = 𝑧284 = 𝑧384 = 1/3, iii) for q = 1, 𝑧124 = 𝑧223 = 1/6, 𝑧324 = 2/3, 𝑧134 = 𝑧333 = 1/6, 𝑧234 = 2/3, 

𝑧243 = 𝑧343 = 1/6, 𝑧145 = 2/3, and iv) for q = 2, 𝑧155 = 𝑧253 = 𝑧353 = 1/3, 𝑧164 = 𝑧264 = 𝑧363 = 1/3, 𝑧174 = 
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𝑧273 = 𝑧374 = 1/3. On completion of step III, 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 = 0 for each i-(𝑘̂𝑖-1)𝑀𝑘̂−1
′ , and 𝑅_𝐶𝑎𝑝𝑘̂𝑖

= 3/3 for 

each i-𝑘̂𝑖𝑀𝑘̂
′ . In step VI, 𝑧1𝑗5 = 𝑧2𝑗4 = 𝑧3𝑗4 = 1/3 for j = 10, 11 and 12. It is clear from the partial solution 

so constructed, that the l-h-s of (43) exceeds its r-h-s by 1, resulting in the maximum possible violation of 

the inequality. The fractional solution above is presented in Figure 4 below. 

 

Figure 4. Illustration of a fractional solution that violates the Complete p-ACM inequality. 

Consider another instance of (z, y)f in which M’ = {1,…., 4}, N’ = {1,…., 17}, Hq = {1,…, 16} and 𝑘̂𝑖 = 5 

for i = 1,…, 4. Naturally, 𝑦15 = 𝑦25 = 𝑦35 = 𝑦45 = 1/4, 𝑦14 = 𝑦24 = 𝑦34 = 𝑦44 = 3/4. Using the 

Algorithm_z{M’, N’}, the z values obtained are, 𝑧114 = 𝑧214 = 𝑧314 = 𝑧414 = 𝑧1,16,5 = 𝑧2,16,5 = 𝑧3,16,5 = 

𝑧4,16,5 = 1/4, 𝑧124 = 𝑧224 = 𝑧324 = 𝑧425 = 𝑧134 = 𝑧234 = 𝑧335 = 𝑧434 = 𝑧144 = 𝑧245 = 𝑧344 = 𝑧444 = 𝑧155 = 

𝑧254 = 𝑧354 = 𝑧454 = 1/4, 𝑧164 = 𝑧264 = 𝑧174 = 𝑧374 = 𝑧184 = 𝑧484 = 𝑧294 = 𝑧394 = 𝑧2,10,4 = 𝑧4,10,4 = 𝑧3,11,4 

= 𝑧4,11,4 = 3/8, 𝑧365 = 𝑧465 = 𝑧275 = 𝑧475 = 𝑧285 = 𝑧385 = 𝑧195 = 𝑧495 = 𝑧1,10,5 = 𝑧3,10,5 = 𝑧1,11,5 = 𝑧2,11,5 = 

1/8, 𝑧1,12,4 = 𝑧2,13,4 = 𝑧3,14,4 = 𝑧4,15,4 = 3/4, 𝑧2,12,5 = 𝑧3,12,5 = 𝑧4,12,5 = 𝑧1,13,5 = 𝑧3,13,5 = 𝑧4,13,5 = 𝑧1,14,5 = 

𝑧2,14,5 = 𝑧4,14,5 = 𝑧1,15,5 = 𝑧2,15,5 = 𝑧3,15,5 = 1/12. Here as well, (z, y)f satisfies (4), (5), (7) and (8) by 

ensuring that no flow occurs on arcs associated with hidden assignments. Thus, (43) is violated by an 

amount of 1.            

3.2 Partial p-Agent Cardinality Matching Inequalities 

As with the Complete p-ACM inequality, Partial p-ACM inequalities are also constructed around sets 

WpM with |Wp| = p and HqN’N. As well, cardinalities of each iWp are partitioned into two sets: a) 𝐾𝑖
− 

= {1,..., k(i)-1}, b) 𝐾𝑖
+= {k(i),…, n-1}. However, Partial p-ACM inequalities apply when n’ ≤ 2𝑝-1. Further, 

their structure changes as n’ decreases in relation to p. Broadly, Partial p-ACM inequalities can be classified 

into the following two cases: I) p+1 ≤ n’ ≤ ∑ 𝑘(𝑖)𝑖∈𝑊𝑝
 – r for some 1 ≤ r ≤ p-1 and II) n’ ≤ p. Note that 

when n’ = ∑ 𝑘(𝑖)𝑖∈𝑊𝑝
 – r for some 1 ≤ r ≤ p-1, the Partial p-ACM inequality-Case I) seeks to violate 

fractional solutions (z, y)f in which ∑ 𝑦𝑖𝑘𝑖

𝑛−1
𝑘𝑖=1 =1, for each iWp, while if n’ ≤ ∑ 𝑘(𝑖)𝑖∈𝑊𝑝

 – p, ∑ 𝑦𝑖𝑘𝑖

𝑛−1
𝑘𝑖=1 <1, 

for each iWp. With Partial p-ACM inequality-Case II), in which n’ ≤ p as well, the fractional solution (z, 

y)f, is such that ∑ 𝑦𝑖𝑘𝑖

𝑛−1
𝑘𝑖=1 <1, for each iWp. The two cases will be discussed in the same order. 
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Partial p-ACM inequality-Case I): 

As with Complete p-ACM inequalities, conditions (37a), (37b), (37c) and (37d), apply here as well. As 

well, i) 𝛼𝑖𝑗𝑛 = 1 for each iM, jN, and ii) 𝛼𝑖𝑗𝑘𝑖
 = 1 for each j{N-N’}, i{M-Wp} and 1 ≤ ki ≤ n-1. Given 

this, for any feasible solution, the r-h-s of Partial p-ACM inequality-Case I) will be either n-1 or n. In 

particular, when 𝑦𝑖𝑘𝑖
 = 1 for each iWp for some 1 ≤ ki ≤ n-p, its r-h-s will be n-1. For such instances, for 

this inequality to be valid, the maximum value its l-h-s can take cannot exceed n-1. This is accomplished 

by appropriately selecting a HqN’ such that for every feasible solution to (Pzy)  in which all agents in Wp 

are utilized, the assignment of at least one jHq is hidden from every iWp, as well as each i{M-Wp}. It 

now suffices to specify all the hidden assignments in the Partial p-ACM inequality-Case I). 

In any feasible solution to (Pzy), define 𝑊𝑡
− = {iWp| 𝑦𝑖𝑘𝑖

 = 1, for some ki𝐾𝑖
−} and 𝑊𝑡

+ = {iWp| 𝑦𝑖𝑘𝑖
 = 

1, for some ki𝐾𝑖
+}. The set of all hidden assignments in the Partial p-ACM inequality-Case I) are: 

i) The assignment of j{N-N’} to iWp with ki𝐾𝑖
+ such that ki ≤ n-∑ 𝑘(𝑖′)𝑖′∈{𝑊𝑝−𝑖} .                   (54a) 

ii) The assignment of a designated j-Hq to each iWp, with ki𝐾𝑖
−, and to each i{M-Wp} with 1 ≤ ki 

≤ n-1.                                           (54b) 

iii) The assignment of a jHq to an iWp with ki𝐾𝑖
+ and to each i’{Wp-i} with ki𝐾𝑖

−.              (54c) 

iv) For each selection of 𝑊𝑡
−Wp with 1 ≤ |𝑊𝑡

−| ≤ p-2 and 𝑊𝑡
+ = Wp-𝑊𝑡

−, the assignment of a jHq to 

each i𝑊𝑡
−, 𝑘𝑖𝐾𝑖

−, and to each 𝑖+𝑊𝑡
+ whose k(i+) ≤ 𝑘𝑖+ ≤ n-∑ 𝑘(𝑖)𝑖∈{𝑊𝑡

+−𝑖+} -|𝑊𝑡
−|.     (54d) 

v) For each j{Hq-j
-} whose assignment to each i𝑊𝑡

− and each i𝑊𝑡
+, as specified in (54d), its 

assignment to each i{M-Wp} with 1 ≤ ki ≤ n-∑ 𝑘(𝑖)𝑖∈𝑊𝑡
+ -|𝑊𝑡

−|.        (54e) 

Since n’ ≤ ∑ 𝑘(𝑖)𝑖∈𝑊𝑝
 – r for some 1 ≤ r ≤ p-1, n’ < ∑ 𝑘(𝑖)𝑖∈𝑊𝑝

. Therefore, feasible solutions in (Pzy) in 

which 𝑦𝑖𝑘𝑖
 = 1 with ki𝐾𝑖

+ for each iWp, at least one j{N-N’} must be assigned to an iWp. All such 

assignments are hidden as per (54a). Now consider feasible solutions in (Pzy) in which 𝑦𝑖𝑘𝑖
 = 1 with ki𝐾𝑖

− 

for each iWp. As per (54b), the assignment of j-Hq to each iWp with ki𝐾𝑖
− and each i{M-Wp} with 1 

≤ ki ≤ n-1 is hidden. This ensures that all solutions in which |𝑊𝑡
−| = p, the assignment of j-Hq is hidden. 

Consider feasible solutions in (Pzy) in which an agent iWp with ki ≥ n-p+1, as well as agents i’{Wp-i} 

with ki’𝐾𝑖′
− are utilized. Here, since 𝛽𝑖𝑘𝑖

= 𝑛 − 𝑝 for ki ≥ n-p+1, the r-h-s of the Partial p-ACM inequality 

is n-1. However, (54c) ensures that the l-h-s of the Partial p-ACM inequality-Case I) is n-1 as well. Finally, 

(54d) and (54e) refers to all feasible solutions in (Pzy) not accounted for in (54a), (54b) and (54c). The 

hidden assignments specified in (54d) and (54e) ensure that the l-h-s  of at least one jHq is hidden, resulting 

in the l-h-s of the Partial p-ACM inequality-Case I) being at most n-1. 

What is fundamentally different about Partial p-ACM inequalities is that, |Hq| ≤ n’ < 2p-1. This implies 

that, unlike with Complete p-ACM inequalities, the assignment of the same jHq has to be hidden in more 

than one set of feasible solutions. For each jHq, let 𝑊−(𝑗) = {iWp| 𝛼𝑖𝑗𝑘𝑖
 = 0, for 𝑘𝑖𝐾𝑖

−} and 𝑊+(𝑗) = 

{iWp| 𝛼𝑖𝑗𝑘𝑖
 = 0, for those 𝑘𝑖𝐾𝑖

+, in which a feasible solution is possible}. In the Complete p-ACM 

inequality, 𝑊−(𝑗)𝑊+(𝑗) =  for each jHq. However, with Partial p-ACM inequalities, overlapping sets 
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are introduced for one or more jHq, wherein 𝑆(𝑗) = 𝑊−(𝑗)𝑊+(𝑗) ≠ . For overlapping sets, for each 

subset 𝑆−(𝑗)𝑆(𝑗), the assignment of j to all active agents is hidden in feasible solutions in which: i) 𝑦𝑖𝑘𝑖
 

= 1, for each i{{𝑊−(𝑗)- 𝑆(𝑗)}𝑆−(𝑗)} with ki𝐾𝑖
−, and ii) 𝑦𝑖𝑘𝑖

 = 1, for each i{{𝑊+(𝑗)-𝑆(𝑗)}{𝑆(𝑗) −

𝑆−(𝑗)}}, with ki𝐾𝑖
+.  

As with Complete p-ACM inequalities, the following set of ‘threshold’ cardinalities represent the largest 

cardinality that an agent can be associated with for the assignment of a jHq to be hidden. To satisfy the 

requirements in (54a), for each iWp, 𝑘𝑚𝑎𝑥3(𝑖) = Max {n-∑ 𝑘(𝑖′)𝑖′∈{𝑊𝑝−𝑖} , k(i)-1}. The threshold 𝑘𝑚𝑎𝑥3(𝑖) 

is the maximum cardinality that can be afforded to i given that each i’{Wp-i} has k(i’) jobs assigned to it. 

Provided 𝑘𝑚𝑎𝑥3(𝑖) ≥ k(i), the assignment of each j{N-N’} to iWp is hidden for k(i) ≤ ki ≤ 𝑘𝑚𝑎𝑥3(𝑖), 

while 𝛼𝑖𝑗𝑘𝑖
 = 1 for ki>𝑘𝑚𝑎𝑥3(𝑖). To satisfy condition (54e), for each i{M-Wp} and j{Hq-j

-}, the threshold 

𝑘𝑚𝑎𝑥4(𝑖, 𝑗) = n-∑ 𝑘(𝑖)𝑖∈{𝑊𝑝−𝑊−(𝑗)} -|𝑊−(𝑗)|, represents the largest feasible cardinality possible for i{M-

Wp} when each i𝑊−(𝑗) has a cardinality of 1, and each i{Wp-𝑊−(𝑗)} has a cardinality of k(i). Hence, 

the assignment of each j{Hq-j
-} to i{M-Wp} with ki ≤ 𝑘𝑚𝑎𝑥4(𝑖, 𝑗) is hidden. Next, to satisfy conditions 

required of each j{Hq-j
-} as per (54d), the threshold cardinality, 𝑘𝑚𝑎𝑥5(𝑖, 𝑗) is defined. For each i{𝑊𝑝-

𝑊−(𝑗)} and j{Hq| |𝑊−(𝑗)|≤p-2}, 𝑘𝑚𝑎𝑥5(𝑖, 𝑗) = Max {n-∑ 𝑘(𝑖′)𝑖′∈{𝑊𝑝−𝑊−(𝑗)−𝑖} -|𝑊−(𝑗)|, k(i)-1} 

represents the maximum cardinality possible with i{𝑊𝑝-𝑊−(𝑗)}, and a jHq whose |𝑊−(𝑗)|≤p-2. Hence, 

𝛼𝑖𝑗𝑘𝑖
 = 0 for each j{Hq| |𝑊−(𝑗)|≤p-2}, i{𝑊𝑝-𝑊−(𝑗)}, k(i) ≤ ki ≤ 𝑘𝑚𝑎𝑥5(𝑖, 𝑗).  

Assuming that sets 𝑊−(𝑗) and 𝑊+(𝑗) for each jHq includes the possibility of 𝑆(𝑗) = , the generic form 

of Partial p-ACM inequality-Case I) can be stated as: 

∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=1𝑗∈{𝑁−𝑁′}𝑖∈{𝑀−𝑊𝑝}

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=𝑘𝑚𝑎𝑥4(𝑖,𝑗)+1𝑗∈{𝐻𝑞−𝑗−}𝑖∈{𝑀−𝑊𝑝}

+ ∑ ∑ 𝑧𝑖𝑗−𝑘𝑖

𝑛−1

𝑘𝑖=𝑘(𝑖)𝑖∈𝑊𝑝

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=𝑘𝑚𝑎𝑥5(𝑖,𝑗)+1𝑗∈{𝐻𝑞| |𝑊−(𝑗)|≤𝑝−2}𝑖∈{𝑊𝑝−𝑊−(𝑗)}

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=𝑘(𝑖)𝑗∈𝐻𝑞𝑖∈{𝑊−(𝑗)−𝑆(𝑗)}

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑘𝑖∈𝐾𝑖
−𝑗∈𝐻𝑞𝑖∈{𝑊+(𝑗)−𝑆(𝑗)}

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=𝑘𝑚𝑎𝑥3(𝑖)+1𝑗∈{𝑁−𝑁′}𝑖∈𝑊𝑝

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=1𝑗∈{𝑁′−𝐻𝑞}𝑖∈𝑊𝑝

+ ∑ ∑ 𝑧𝑖𝑗𝑛

𝑗∈𝑁𝑖∈𝑀

 

≤   ∑ ∑ (𝑘𝑖 − 1)𝑦𝑖𝑘𝑖

𝑛−𝑝

𝑘𝑖=1𝑖∈𝑊𝑝

+ ∑ ∑ (𝑛 − 𝑝)𝑦𝑖𝑘𝑖

𝑛−1

𝑘𝑖=𝑛−𝑝+1𝑖∈𝑀

+ ∑ ∑ 𝑘𝑖𝑦𝑖𝑘𝑖

𝑛−𝑝

𝑘𝑖=1𝑖∈{𝑀−𝑊𝑝}

+ ∑(𝑛 − 𝑝 + 1)𝑦𝑖𝑛

𝑖∈𝑀

+ (𝑝 − 1).                                                                                   (55) 

There are numerous possibilities of identifying an appropriate set HqN’, and associated sets 𝑊−(𝑗) and 

𝑊+(𝑗) for each jHq. In the most general case, Hq consists of a mixture, with some associated with 

overlapping sets, and some not. Algorithmically, an easy heuristic for generating sets, 𝑊−(𝑗), 𝑊+(𝑗) and 
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𝑆(𝑗), all of the same size, is by ‘sliding’ them forward in a circular fashion. By this we mean that two 

adjacent sets differ in their composition by just one entity in Wp. For example, if for a j1Hq, {𝑊−(𝑗1)-

𝑆(𝑗1)} = {i1,.., iu}, 𝑆(𝑗1) = {iu+1,.., iu+s} and {𝑊+(𝑗1)-𝑆(𝑗1)} = {iu+s+1,.., ip}, then an adjacent j2Hq defines 

sets {𝑊−(𝑗2)-𝑆(𝑗2)} = {i2,.., iu+1}, 𝑆(𝑗2) = {iu+2,.., iu+s+1} and {𝑊+(𝑗2)-𝑆(𝑗2)} = {iu+s+2,.., i1}. For l = 3,.., 

p, the sets associated with jlHq are, {𝑊−(𝑗𝑙)-𝑆(𝑗𝑙)} = {il,.., iu+l}, 𝑆(𝑗𝑙) = {iu+l+1,.., iu+l+s} and {𝑊+(𝑗𝑙)-

𝑆(𝑗𝑙)} = {iu+s+l+1,.., il-1}, while noting the circular nature of the indices. That is, if x > p in ix, then x → x-p. 

Using such an approach, p sets of the same size are generated. Henceforth, we will refer to the above as a 

‘sliding mechanism’. It needs to be noted that for each jlHq, its assignment is hidden in 2s feasible solutions 

where s = |𝑆(𝑗𝑙)|. In the following example, we illustrate the construction of a Partial p-ACM inequality-

Case I) in which Hq consists of a mixture of jobs, some associated with overlapping sets and some not. 

Example 5. Consider the instance, Wp = {1,2, 3, 4, 5}, M-Wp = {6}, N’ = {1,…, 27}, k(1) = 7, k(i) = 6, for 

i = 2, …, 5 and N–N’ = {28,…, 33}. Here, p = 5, r = 4 and 𝑘𝑚𝑖𝑛= 6. Since n’ = 27, |Hq| ≤ 27. One construction 

of Hq consists of Hq = {1,…, 26}. The first 20 jobs in Hq are associated with non-overlapping sets and the 

next 5 with overlapping sets. To begin with, j- = 26, for which |𝑊−(𝑗)| = 5 and |𝑊+(𝑗)| = 0. For j = 1,.., 5, 

|𝑊−(𝑗)| = 4, |𝑊+(𝑗)| = 1 and therefore 𝑆(𝑗) = . For |𝑊+(𝑗)| = 1, there are 5𝐶1 = 5 selections of 𝑊+(𝑗) 

from Wp. For j = 6,…, 15, |𝑊−(𝑗)| = 3 and |𝑊+(𝑗)| = 2, comprising of 5𝐶2 = 10 selections of 𝑊+(𝑗) from 

Wp. For j = 16,…, 20, |𝑊−(𝑗)| = 2 and |𝑊+(𝑗)| = 3, whose associated sets are obtained using the sliding 

mechanism described above. They are: i) 𝑊−(16) = {1, 2}, 𝑊+(16) = {3, 4, 5}, ii) 𝑊−(17) = {2, 3}, 

𝑊+(17) = {4, 5, 1}, iii) 𝑊−(18) = {3, 4}, 𝑊+(18) = {5, 1, 2}, iv) 𝑊−(19) = {4, 5}, 𝑊+(19) = {1, 2, 

3}, v) 𝑊−(20) = {5, 1}, 𝑊+(20) = {2, 3, 4}. Thus far, the assignment of each j = 1,…, 20 is hidden in 

feasible solutions in which 𝑊𝑡
− = 𝑊−(𝑗), accounting for 20 combinations in which 2 ≤ |𝑊−(𝑗)| ≤ 4. The 

remaining five combinations for which |𝑊𝑡
−| = 2 comprise of the following overlapping sets. For each j = 

21,…, 25, the sizes of the sets are |𝑊−(𝑗)| = 2, |𝑊+(𝑗)| = 4, and |𝑆(𝑗)| = 1. However, before applying the 

sliding mechanism, indices in Wp are reordered as Wp = {1, 3, 5, 2, 4}. That is, the odd numbered elements 

in the previous order are placed before the even numbered elements. Here, i) 𝑊−(21) = {1, 3}, 𝑊+(21) = 

{3, 5, 2, 4}, ii) 𝑊−(22) = {3, 5}, 𝑊+(22) = {5, 2, 4, 1}, iii) 𝑊−(23) = {5, 2}, 𝑊+(23) = {2, 4, 1, 3}, iv) 

𝑊−(24) = {2, 4}, 𝑊+(24) = {4, 1, 3, 5}, v) 𝑊−(25) = {4, 1}, 𝑊+(25) = {1, 3, 5, 2}. From these 

overlapping sets, the remaining five combinations of 𝑊𝑡
− with |𝑊𝑡

−| = 2, as well as all combinations with 

|𝑊𝑡
−| = 1 are accounted for.  

The threshold cardinalities in (55) are as follows. For j = 1,…, 4 and i = 6,  𝑘𝑚𝑎𝑥4(6, 𝑗) = 33-6-4 = 23, and 

for j = 5, 𝑘𝑚𝑎𝑥4(6, 𝑗) = 33-7-4 = 22. For all j{Hq| |𝑊+(𝑗)| = 2 and 1𝑊+(𝑗)}, 𝑘𝑚𝑎𝑥4(6, 𝑗) = 33-6*2-3 = 

18, and for all j{Hq| |𝑊+(𝑗)| = 2 and 1𝑊+(𝑗)}, 𝑘𝑚𝑎𝑥4(6, 𝑗) = 33-6-7-3 = 17. There are 6 instances in 

the former and 4 in the latter. For j = 16, 20, 21 and 25, 𝑘𝑚𝑎𝑥4(6, 𝑗) = 33-6*3-2 = 13 and for j = 17, 18, 19, 

22, 23 and 24, 𝑘𝑚𝑎𝑥4(6, 𝑗) = 33-(7+6+6)-2 = 12. For j = 6,…, 15 and i𝑊+(𝑗), 𝑘𝑚𝑎𝑥5(𝑖, 𝑗) = 33-6-3 = 24, 

when i = 1, else 𝑘𝑚𝑎𝑥5(𝑖, 𝑗) = 33-7-3 = 23. For j = 16, 20, 21 and 25, and any i𝑊+(𝑗),  𝑘𝑚𝑎𝑥5(𝑖, 𝑗) = 33-

(6+6)-2 = 19. For j = 17, 18, 19, 22, 23 and 24, and any i𝑊+(𝑗),  𝑘𝑚𝑎𝑥5(𝑖, 𝑗) = 33-(7+6)-2 = 18. For each 
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j{N-N’} and i = 1, 𝑘𝑚𝑎𝑥3(𝑖) = n-∑ 𝑘(𝑖′)𝑖′∈{𝑊𝑝−𝑖}  = 33-4*6 = 9 and for i = 2,…, 5, 𝑘𝑚𝑎𝑥3(𝑖) = 33 – 7 – 

3*6 = 8.  

We now construct a fractional solution (z, y)fLP(z, y) that violates (55) in the above instance. Let, M’ = 

Wp = {1,…, 5} and N’ = {1,…, 27}. As with Complete p-ACM inequalities, the fractional part of (z, y)f is 

derived by viewing it as flows from nodes in [𝑀𝑘̂−1
′ , 𝑀𝑘̂

′ ] to nodes in N’. Therefore, without loss of 

generality, integer valued assignments can be made of jobs in {N-N’} to agents in {M-M’}. Thus, 𝑦66 = 1 

and 𝑧6𝑗6 = 1 for j = 28, …, 33.  For each iM’, 𝑘̂1 = 7, and 𝑘̂𝑖 = 6 for i = 2,…, 5, and accordingly, 𝑦𝑖𝑘̂𝑖−1 =

𝑦̂𝐾𝐿
 = 𝑟/𝑝 = 4/5 and 𝑦𝑖𝑘̂𝑖

 = 𝑦̂𝐾𝑈
 = (𝑝 − 𝑟)/𝑝 = 1/5. The z values associated with each iM’ and jN’ are 

obtained using Algorithm_z{M’, N’}, by directing flows from [𝑀𝑘̂−1
′ , 𝑀𝑘̂

′ ] to nodes in N’ by completely 

avoiding hidden assignments. As per step II of Algorithm_z{M’, N’}, 𝑘̂𝑖-𝑘𝑚𝑖𝑛 = 1 for i = 1, and 0 for the 

rest. Here, Ns(1) = {27} is selected and consequently, 𝑧1,27,7 = 𝑦̂𝐾𝑈
 = 1/5, 𝑧1,27,6 = 𝑦̂𝐾𝐿

 = 4/5. Post this step, 

the available capacities, 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 = 4/5*5 = 4 and 𝑅_𝐶𝑎𝑝𝑘̂𝑖
 = 1/5*6 = 6/5.  

For each jHq, its assignment is hidden from each i𝑊−(𝑗), ki = (𝑘̂𝑖-1) and each i𝑊+(𝑗), ki = 𝑘̂𝑖. 

Therefore, the flow into these jobs occur only from i𝑊−(𝑗), ki = 𝑘̂𝑖 and i𝑊+(𝑗), ki = (𝑘̂𝑖-1). For j = 1,…, 

5, |𝑊−(𝑗)| = 4, |𝑊+(𝑗)| = 1 and 𝑆(𝑗) = . Thus, for j = 1,…, 5, as per step III of Algorithm_z{M’, N’}, 

𝑧𝑖𝑗𝑘̂𝑖−1 = 𝑦̂𝐾𝐿
(5 − 4)⁄  = 4/5, for each i𝑊+(𝑗), ki = (𝑘̂𝑖-1), and 𝑧𝑖𝑗𝑘̂𝑖

 = 𝑦̂𝐾𝑈
(5 − 1)⁄  = 1/20, for each 

i𝑊−(𝑗), ki = 𝑘̂𝑖. Consequently, 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 = 4-4/5 = 16/5 and 𝑅_𝐶𝑎𝑝𝑘̂𝑖
 = 6/5 – 4*1/20 = 5/5. Next, for j 

= 6,…, 15, |𝑊−(𝑗)| = 3, |𝑊+(𝑗)| = 2 and 𝑆(𝑗) = . Therefore, 𝑧𝑖𝑗𝑘̂𝑖−1 = 𝑦̂𝐾𝐿
(5 − 3)⁄  = 2/5, for each 

i𝑊+(𝑗), ki = (𝑘̂𝑖-1), and 𝑧𝑖𝑗𝑘̂𝑖
 = 𝑦̂𝐾𝑈

(5 − 2)⁄  = 1/15, for each i𝑊−(𝑗), ki = 𝑘̂𝑖. Observe that 4𝐶1 = 4 arcs 

emanate out of each i𝑊−(𝑗) with ki = (𝑘̂𝑖-1), and 4𝐶2 = 6 arcs emanate out of each i𝑊+(𝑗), ki = 𝑘̂𝑖, 

whose end node belongs to {6,…, 15}. Therefore, the remaining capacities get updated as, 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 → 

16/5-4*2/5 = 8/5 and 𝑅_𝐶𝑎𝑝𝑘̂𝑖
 → 5/5 – 6*1/15 = 3/5. For j = 16,…, 20, |𝑊−(𝑗)| = 2 and |𝑊+(𝑗)| = 3. Thus, 

for j = 16,…, 20, the z values obtained are, 𝑧𝑖𝑗𝑘̂𝑖−1 = 𝑦̂𝐾𝐿
3⁄  = 4/15 for each i𝑊+(𝑗), and 𝑧𝑖𝑗𝑘̂𝑖

 = 𝑦̂𝐾𝑈
2⁄  = 

1/10 for each i𝑊−(𝑗). The sets, 𝑊−(𝑗) and 𝑊+(𝑗) for j = 16,…, 20, are obtained using the sliding 

mechanism. As a result, out of each i-(𝑘̂𝑖-1)𝑀𝑘̂−1
′ , three arcs, and out of each i-𝑘̂𝑖𝑀𝑘̂

′ , two arcs have 

their end-node at {16,…, 20}. Therefore, the remaining capacities get updated as, 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 → 8/5 – 

3*4/15 = 4/5 and 𝑅_𝐶𝑎𝑝𝑘̂𝑖
→ 3/5 – 2*1/10 = 2/5. Finally, for j = 21,…, 25, since |𝑊−(𝑗)| = 2, |𝑊+(𝑗)| = 4, 

and |𝑆(𝑗)| = 1, its assignment is not hidden from each i{M’-𝑊−(𝑗)}, ki = 𝑘̂𝑖-1, with |M’-𝑊−(𝑗)| = 3, and 

each i{M’-𝑊+(𝑗)}, ki = 𝑘̂𝑖, with |M’-𝑊+(𝑗)| = 1. Here, 𝑧𝑖𝑗𝑘̂𝑖−1 = 𝑦̂𝐾𝐿
3⁄  = 4/15 for each i𝑊+(𝑗) and 

𝑧𝑖𝑗𝑘̂𝑖
 = 𝑦̂𝐾𝑈

1⁄  = 1/5 for each i𝑊−(𝑗). Here as well, the sets, 𝑊−(𝑗) and 𝑊+(𝑗) are sliding in nature, 

across j = 21,…, 25. Consequently, 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 = 4/5 – 3*4/15 = 0 and 𝑅_𝐶𝑎𝑝𝑘̂𝑖
 = 2/5 – 1*1/5 = 1/5. The 

remaining job in Hq is j* = 27, for which |𝑊−(𝑗)| = 5 and |𝑊+(𝑗)| = 0. Therefore, the flow from each i-

𝑘̂𝑖𝑀𝑘̂
′  to j* is 1/5. That is, 𝑧𝑖27𝑘̂𝑖

 = 1/5 for each iM’, and consequently 𝑅_𝐶𝑎𝑝𝑘̂𝑖
= 1/5 – 1/5 = 0. Since 

𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 = 𝑅_𝐶𝑎𝑝𝑘̂𝑖
 = 0, along with all jN’ assigned, the resulting fractional solution (z, y)fLP(z, y). 

More importantly, the fractional flows completely avoid hidden assignments, resulting in the l.h.s of (55) 

equal t0 33, while its r.h.s equal to 32. This illustrates the maximum possible violation of 1.      
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The above example illustrates how a mixture of overlapping and non-overlapping sets associated with each 

jHq can be used to construct the Partial p-ACM inequality-Case I). We now present another example of 

Partial p-ACM inequality-Case I) in which all jHq are associated with overlapping sets. Such Partial p-

ACM inequalities are useful when n’ is so small that it cannot accommodate non-overlapping sets. It can 

be shown that if all jobs in Hq are associated only with overlapping sets, the Partial p-ACM inequality-

Case I) consists of |Hq| = lp+1 jobs for some 1 ≤ l ≤ ⌈𝑝/2⌉-1. For each s = 1,.., l, there are p jobs in Hq, each 

associated with overlapping sets |𝑊−(𝑗)| = p-s, |𝑊+(𝑗)| = p-l+s-1 and |𝑆(𝑗)| = p-l-1. In addition, each of 

the the p sets associated with a jHq are generated using the sliding mechanism. The overlapping sets are 

generated sequentially, starting from s = 1, and ending at s = l. Moving from s-1 to s, for 2 ≤ s ≤ l, the 

indices in Wp are reordered, wherein the odd numbered indices are placed before the even numbered ones. 

This reordering is executed before generating the sets for stage s. The last job j-Hq is associated with 

|𝑊−(𝑗−)| = p and |𝑊+(𝑗−)| = 0. The following example illustrates the construction process. 

Example 6. Let Wp = {1, 2, 3, 4, 5}, M-Wp = {6}, N’ = {1,…, 12}, k(1) = 4, k(i) = 3, for i = 2, …, 5 and N–

N’ = {13,…, 18}. Since HqN’ and |Hq| = 5l+1 for some 1 ≤ l ≤ 3-1, one possibility is with l = 2, for which 

|Hq| = 11. Let Hq = {1, …, 10, 12}. Beginning with s = 1, we have that for j = 1,…, 5, |𝑊−(𝑗)| = 4, |𝑊+(𝑗)| 

= 3 and |𝑆(𝑗)| = 2. Given the current ordering in Wp, the contents of the sets associated with j = 1,.., 5, using 

the sliding mechanism are: i) 𝑊−(1) = {1, 2, 3, 4}, 𝑊+(1) = {3, 4, 5}, ii) 𝑊−(2) = {2, 3, 4, 5}, 𝑊+(2) = 

{4, 5, 1}, iii) 𝑊−(3) = {3, 4, 5, 1}, 𝑊+(3) = {5, 1, 2}, iv) 𝑊−(4) = {4, 5, 1, 2}, 𝑊+(4) = {1, 2, 3}, v) 

𝑊−(5) = {5, 1, 2, 3}, 𝑊+(5) = {2, 3, 4}. Next, for s = 2, the sizes of the overlapping sets are, |𝑊−(𝑗)| = 

3, |𝑊+(𝑗)| = 4 and |𝑆(𝑗)| = 2. The contents of Wp are reordered as, Wp = {1, 3, 5, 2, 4}. For j = 6, …, 10, 

using the sliding mechanism, i) 𝑊−(6) = {1, 3, 5}, 𝑊+(6) = {3, 5, 2, 4}, ii) 𝑊−(7) = {3, 5, 2}, 𝑊+(7) = 

{5, 2, 4, 1}, iii) 𝑊−(8) = {5, 2, 4}, 𝑊+(8) = {2, 4, 1, 3}, iv) 𝑊−(9) = {2, 4, 1}, 𝑊+(9) = {4, 1, 3, 5}, v) 

𝑊−(10) = {4, 1, 3}, 𝑊+(10) = {1, 3, 5, 2}. Finally, 𝑊−(12) = {1, 2, 3, 4, 5} and 𝑊+(12) = . The 

threshold cardinalities for this example are as follows. For j = 1, 3, 4 and 5, 𝑘𝑚𝑎𝑥4(6, 𝑗) = 18-3-4 = 11, and 

for j = 2, 𝑘𝑚𝑎𝑥4(6, 𝑗) = 18-4-4 = 10. For j = 6, 7 and 8, 𝑘𝑚𝑎𝑥4(6, 𝑗) = 18-(3+3)-3 = 9, and for j = 9 and 10, 

𝑘𝑚𝑎𝑥4(6, 𝑗) = 18-(4+3)-3 = 8. Note that for j = 1,…, 5, |𝑊−(𝑗)| = 4 = p-1. Therefore, 𝛼𝑖𝑗𝑘𝑖
 = 0 for i = {Wp-

𝑊−(𝑗)}, k(i) ≤ ki ≤ n-1. For j = 6,…, 10, 𝑘𝑚𝑎𝑥5(𝑖, 𝑗) = 18-3-3 = 12, when i = 1 or 1𝑊−(𝑗), else 𝑘𝑚𝑎𝑥5(𝑖, 𝑗) 

= 18-4-3 = 11. For each j{N-N’} and i = 1, 𝑘𝑚𝑎𝑥3(𝑖) = n-∑ 𝑘(𝑖′)𝑖′∈{𝑊𝑝−𝑖}  = 18-4*3 = 6 and for i = 2,…, 

5, 𝑘𝑚𝑎𝑥3(𝑖, 𝑗) = 18 – 4 – 3*3 = 5. 

For this example, (z, y)fLP(z, y) that violates (55) can be identified by setting M’ → Wp and 𝑘̂𝑖 = 4 for i = 

1, and 𝑘̂𝑖 = 3 for i = 2,…, 5. As noted earlier, violation of (55) occurs primarily in the fractional flows from 

nodes in [𝑀𝑘̂−1
′ , 𝑀𝑘̂

′ ] to nodes in N’. For each iM’, the fractional y values are, 𝑦𝑖𝑘̂𝑖−1 = 𝑦̂𝐾𝐿
 = 𝑟/𝑝 = 4/5 

and 𝑦𝑖𝑘̂𝑖
 = 𝑦̂𝐾𝑈

 = (𝑝 − 𝑟)/𝑝 = 1/5. As per step II of Algorithm_z{M’, N’}, 𝑧1,11,4 = 𝑦̂𝐾𝑈
 = 1/5, 𝑧1,11,3 = 𝑦̂𝐾𝐿

 

= 4/5. After this step, the node capacities at each i-(𝑘̂𝑖-1)𝑀𝑘̂−1
′  and i-𝑘̂𝑖𝑀𝑘̂

′  become, 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 = 4/5*2 

= 8/5 and 𝑅_𝐶𝑎𝑝𝑘̂𝑖
 = 1/5*3 = 3/5, respectively. Next, to determine the flow into each j = 1,…, 5, it is noted 

that their assignment is not hidden from each  i{M’-𝑊−(𝑗)} with a cardinality ki = 𝑘̂𝑖-1 and from each 

i{M’-𝑊+(𝑗)} with a cardinality ki = 𝑘̂𝑖. Since |𝑊−(𝑗)| = 4 and |𝑊+(𝑗)| = 3, for j = 1,…, 5, 𝑧𝑖𝑗𝑘̂𝑖−1 = 
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𝑦̂𝐾𝐿
(5 − 4)⁄  = 4/5 for each i{M’-𝑊−(𝑗)}, and 𝑧𝑖𝑗𝑘̂𝑖

 = 𝑦̂𝐾𝑈
(5 − 3)⁄  = 1/10 for each i{M’-𝑊+(𝑗)}. The 

sets, 𝑊−(𝑗) and 𝑊+(𝑗) for j = 1,…, 5, are obtained using a sliding mechanism. Therefore, the number of 

positive flows from each iM’, ki = 𝑘̂𝑖-1 and each iM’, ki = 𝑘̂𝑖, to nodes in {1,…, 5}, is 1 and 2, 

respectively. Consequently, after this step, 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 = 8/5 – 4/5 = 4/5 and 𝑅_𝐶𝑎𝑝𝑘̂𝑖
 = 3/5 – 2*1/10 = 2/5. 

The flows into each j = 6,…, 10, is based on |𝑊−(𝑗)| = 3 and |𝑊+(𝑗)| = 4, for each j = 6,…, 10. Therefore, 

for each j = 6,…, 10, 𝑧𝑖𝑗𝑘̂𝑖−1 = 𝑦̂𝐾𝐿
(5 − 3)⁄  = 2/5 for each i{M’-𝑊−(𝑗)}, and 𝑧𝑖𝑗𝑘̂𝑖

 = 𝑦̂𝐾𝑈
(5 − 4)⁄  = 1/5 

for each i{M’-𝑊+(𝑗)}. As s result, 𝑅_𝐶𝑎𝑝𝑘̂𝑖−1 = 4/5 – 2*4/5 = 0 and 𝑅_𝐶𝑎𝑝𝑘̂𝑖
 = 2/5 – 1/5 = 1/5 for each 

iM’. Finally, for j- = 12, 𝑊−(12) = {1, 2, 3, 4, 5}. Therefore, flow from each i-𝑘̂𝑖𝑀𝑘̂
′  to j = 12, gets 

equally distributed resulting, in 𝑧𝑖12𝑘̂𝑖
 = 1/5 for each iM’. Consequently, 𝑅_𝐶𝑎𝑝𝑘̂𝑖

 → 1/5 – 1/5 = 0, 

implying that (z, y)fLP(z, y). Since (z, y)fLP(z, y) completely avoids hidden assignments, (55) is violated 

by the maximum amount of 1. Figure 5 below illustrates the fractional solution part of (z, y)f.      

 

Figure 5. Illustration of the fractional solution in Example 6 in which p = 5 and n’ = 12. 

We now address the strength of the Partial p-ACM inequality-Case I). Let α’z ≤ β’y+(p-1) denote a compact 

representation of (55). In addition, let WHK = {i-j-ki| iM, jN, 1 ≤ ki ≤ n-1, 𝛼𝑖𝑗𝑘𝑖
= 0 in (55)} and H’(z, 

y) = {(z, y)H(z, y)| 𝑧𝑖𝑗𝑘𝑖
= 0 for every i-j-kiWHK}. Using a line of argument similar to that presented in 

the proof of Theorem 3.1 for (43), the following can be shown to hold true for (55). 

Theorem 3.2 The Partial p-ACM inequality-Case I), (55) is a non-trivial facet of H’(z, y). 

Since various Partial p-ACM inequalities in the form of (55) can be constructed with varying combinations 

of overlapping and non-overlapping sets associated with each jHq, it need not be a non-trivial facet of H(z, 

y). This is particularly so if the partitioning cardinalities k(i) vary across iWp. However, it is easy to 

construct a non-trivial facet of H(z, y) from (55) by sequentially lifting the coefficients of 𝑧𝑖′𝑗′𝑘
𝑖′

 whose (i’-

j’-ki’)WHK. For each (i’-j’-ki’)WHK, the coefficient 𝛼𝑖′𝑗′𝑘
𝑖′

 is determined by solving the optimization 

problem in (51) in some sequence. Further, it can be shown that the lifted coefficient values will be at most 

1. As an illustration, for the Partial p-ACM inequality constructed in Example 6, the coefficients of z 
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variables after sequentially solving (51) are as follows: 𝛼362 = 𝛼562 = 𝛼272 = 𝛼562 = 𝛼282 = 𝛼482 = 𝛼193 = 

𝛼492 = 𝛼1,10,3 = 𝛼3,10,2 = 1. The coefficients of the remaining z variables in WHK remain equal to 0. 

Note that both in Example 5 and Example 6, n’ = ∑ 𝑘(𝑖)𝑖∈𝑊𝑝
 – r with r = p-1. Therefore,  the fractional 

solution (z, y)fLP(z, y) that violates (55) was such that ∑ ∑ 𝑦𝑖𝑘𝑖

𝑛−1
𝑘𝑖=1𝑖∈𝑊𝑝

=1 for each iWp. We now present 

an example in which n’ ≤ ∑ 𝑘(𝑖)𝑖∈𝑊𝑝
 – p. Therefore, the fractional solution that violates (55) is such that 

∑ ∑ 𝑦𝑖𝑘𝑖

𝑛−1
𝑘𝑖=1𝑖∈𝑊𝑝

< 1 for each iWp. 

Example 7. Consider the instance, Wp = {1,2, 3, 4}, M-Wp = {5}, N’ = {1,…, 8}, j- = 7, k(i) = 3, for i = 1, 

…, 4 and N–N’ = {9,…, 13}. Here, p = 4, n’ = 8 and β0 = 3. Since n’ ≤ ∑ 𝑘(𝑖)𝑖∈𝑊𝑝
− 𝑝 = 8, a Partial p-

ACM inequality-Case I) can be constructed with Hq = {1,…, 7}, in which j = 1,.., 4 are each associated 

with overlapping sets, while j = 5, 6 and 7 are each associated with non-overlapping sets. For j- = 7, 𝑊−(7) 

= {1,.., 4} and 𝑊+(7) = . For j = 1,.., 4, the overlapping sets are: i) 𝑊−(1) = {1, 2, 3}, 𝑊+(1) = {3, 4}, 

ii) 𝑊−(2) = {2, 3, 4}, 𝑊+(2) = {4, 1}, iii) 𝑊−(3) = {3, 4, 1}, 𝑊+(3) = {1, 2}, iv) 𝑊−(4) = {4, 1, 2}, 

𝑊+(4) = {2, 3}. For j = 5, 𝑊−(5) = {1, 3}, 𝑊+(5) = {2, 4}, and for j = 6, 𝑊−(6) = {2, 4}, 𝑊+(6) = {1, 

3}. Note that all feasible solutions in which 2 ≤ |𝑊𝑡
−| ≤ 3, the assignment of at least one j{1,.., 6} is hidden, 

while the assignment of j = 7 is hidden in feasible solutions with |𝑊𝑡
−| = 4. Note as well that feasible 

solutions in which |𝑊𝑡
−| ≤ 1, at least one j{N-N’} will necessarily have to be assigned to a iWp with 

ki𝐾𝑖
+, whose assignment is hidden.  

A fractional solution (z, y)fH(z, y) that violates the Partial p-ACM inequality is as follows: i) 𝑦55 = 1, 

𝑧5,9,5 = 𝑧5,10,5 = 𝑧5,11,5 = 𝑧5,12,5 = 𝑧5,13,5 = 1, ii) 𝑦𝑖3 = 1/3 and 𝑦𝑖2 = 1/2, for i = 1,.., 4, iii) 𝑧4,1,2 = 𝑧1,2,2 = 

𝑧2,3,2 = 𝑧3,4,2 = 1/2, 𝑧1,1,3 = 𝑧2,1,3 = 𝑧2,2,3 = 𝑧3,2,3 = 𝑧3,3,3 = 𝑧4,3,3 = 𝑧1,4,3 = 𝑧4,4,3 = 1/4, iv) 𝑧2,5,2 = 𝑧4,5,2 = 

𝑧1,5,3 = 𝑧3,5,3 = 1/4, v) 𝑧1,6,2 = 𝑧3,6,2 = 𝑧2,6,3 = 𝑧4,6,3 = 1/4, vi) 𝑧1,7,3 = 𝑧2,7,3 = 𝑧3,7,3 = 𝑧4,7,3 = 1/4, and vii) 

𝑧1,8,2 = 𝑧2,8,2 = 𝑧3,8,2 = 𝑧4,8,2 = 1/4. The l-h-s of the Partial p-ACM inequality equals 13 as all the fractional 

z values correspond to assignments which are not hidden. The r-h-s is equal to 12 2/3, resulting in a violation 

of 1/3. Observe that in this fractional solution, 𝑦𝑖2+𝑦𝑖3 < 1, for each iWp.        

Partial p-ACM inequality-Case II) 

In Partial p-ACM inequality-Case II), the set N’N in relation to Wp is even more ‘sparse’. Here, 3 ≤ |Hq| 

= n’ ≤ p. Since 𝑘𝑚𝑖𝑛 ≥ 2, it follows that if all jobs in N’ alone are assigned to agents in Wp, then at most p-

1 agents in Wp are active. 

Let, Hq be partitioned into two dichotomous sets Hq(1) and Hq(2), with |Hq(2)| = 𝑘𝑚𝑖𝑛 and |Hq(1)| = n’-𝑘𝑚𝑖𝑛. 

Similarly, Wp is partitioned into two dichotomous sets Wp(1) and Wp(2), with |Hq(1)| = |Wp(1)| and |Hq(2)| ≤ 

|Wp(2)|. Each iWp is uniquely associated with a jHq, denoted as j(i). Thus, for every pair {𝑖1, 𝑖2}Wp(1), 

j(𝑖1) ≠ j(𝑖2). Given this, the r-h-s parameters of the Partial p-ACM inequality-Case II) are, i) β0 = n’-𝑘𝑚𝑖𝑛, 

ii) 𝛽𝑖𝑛 = n-β0 for each iM, iii) for each iWp, 𝛽𝑖𝑘𝑖
 = 0, for 1 ≤ ki ≤ k(i)-1, 𝛽𝑖𝑘𝑖

=𝑘(𝑖)-1, for k(i) ≤ ki ≤ 𝑛′, 

𝛽𝑖𝑘𝑖
 = 𝑘𝑖, for 𝑛′+1 ≤ 𝑘𝑖 ≤ n-β0 and 𝛽𝑖𝑘𝑖

 = n-β0-1, n-β0+1 ≤ ki ≤ n-1, iv) for each i{M-Wp}, 𝛽𝑖𝑘𝑖
= 𝑘𝑖 for 1 

≤ 𝑘𝑖 ≤ n-β0 and 𝛽𝑖𝑘𝑖
 = n-n’, n-β0+1 ≤ ki ≤ n-1. The hidden assignments are as follows. For each iWp, 𝛼𝑖𝑗(𝑖)𝑘𝑖
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= 0 for each k(i) ≤ ki ≤ n’. For each jHq(2), i) 𝛼𝑖𝑗𝑘𝑖
 = 0 for all iWp and ki𝐾𝑖

−, ii) 𝛼𝑖𝑗𝑘𝑖
 = 0 for all iM 

and n-β0+1 ≤ ki ≤ n-1, and iii) 𝛼𝑖𝑗𝑘𝑖
 = 0 for all i{M-Wp}, 1 ≤ ki ≤ β0-1. For each jHq(1), 𝛼𝑖𝑗𝑘𝑖

 = 0 for all 

i{Wp-j(i)} and ki𝐾𝑖
−. For each iWp, j{N-N’}, 𝛼𝑖𝑗𝑘𝑖

 = 0 for all 1 ≤ ki ≤ n’. The Partial p-ACM 

inequality-Case II) obtained is: 

∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛′−𝑘𝑚𝑖𝑛−1

𝑘𝑖=1𝑗∈{𝑁−𝐻𝑞(2)}𝑖∈{𝑀−𝑊𝑝}

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−𝑛′+𝑘𝑚𝑖𝑛

𝑘𝑖=𝑛′−𝑘𝑚𝑖𝑛𝑗∈𝑁𝑖∈{𝑀−𝑊𝑝}

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=𝑛−𝑛′+𝑘𝑚𝑖𝑛+1𝑗∈{𝑁−𝐻𝑞(2)}𝑖∈𝑀

+ ∑ ∑ 𝑧𝑖𝑗(𝑖)𝑘𝑖

𝑘(𝑖)−1

𝑘𝑖=1𝑖∈𝑊𝑝(1)

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛′

𝑘𝑖=𝑘(𝑖)𝑗∈{𝑁′−𝑗(𝑖)}𝑖∈𝑊𝑝

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−𝑛′+𝑘𝑚𝑖𝑛

𝑘𝑖=𝑛′+1𝑗∈𝑁𝑖∈𝑊𝑝

+ ∑ ∑ 𝑧𝑖𝑗𝑛

𝑗∈𝑁𝑖∈𝑀

≤ ∑ ∑ (𝑘(𝑖) − 1)𝑦𝑖𝑘𝑖

𝑛′

𝑘𝑖=𝑘(𝑖)𝑖∈𝑊𝑝

+ ∑ ∑ 𝑘𝑖𝑦𝑖𝑘𝑖

𝑛′

𝑘𝑖=1𝑖∈{𝑀−𝑊𝑝}

+ ∑ ∑ 𝑘𝑖𝑦𝑖𝑘𝑖

𝑛−𝑛′+𝑘𝑚𝑖𝑛

𝑘𝑖=𝑛′+1𝑖∈𝑀

+ ∑ ∑ (𝑛 − 𝑛′)𝑦𝑖𝑘𝑖

𝑛−1

𝑘𝑖=𝑛−𝑛′+𝑘𝑚𝑖𝑛+1𝑖∈𝑀

+ ∑(𝑛 − 𝑛′ + 𝑘𝑚𝑖𝑛)𝑦𝑖𝑛

𝑖∈𝑀

+ (𝑛′ − 𝑘𝑚𝑖𝑛).      (56) 

The above inequality in its current form is not minimal. However, it is made minimal by applying (15a) 

and (15b) on each iWp, n’+1 ≤ ki ≤ n-n’+𝑘𝑚𝑖𝑛, and on each i{M-Wp}, n’-𝑘𝑚𝑖𝑛 ≤ ki ≤ n-n’+𝑘𝑚𝑖𝑛, to 

become 

∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛′−𝑘𝑚𝑖𝑛−1

𝑘𝑖=1𝑗∈{𝑁−𝐻𝑞(2)}𝑖∈{𝑀−𝑊𝑝}

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛−1

𝑘𝑖=𝑛−𝑛′+𝑘𝑚𝑖𝑛+1𝑗∈{𝑁−𝐻𝑞(2)}𝑖∈𝑀

+ ∑ ∑ 𝑧𝑖𝑗(𝑖)𝑘𝑖

𝑘(𝑖)−1

𝑘𝑖=1𝑖∈𝑊𝑝(1)

+ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘𝑖

𝑛′

𝑘𝑖=𝑘(𝑖)𝑗∈{𝑁′−𝑗(𝑖)}𝑖∈𝑊𝑝

+ ∑ ∑ 𝑧𝑖𝑗𝑛

𝑗∈𝑁𝑖∈𝑀

≤ ∑ ∑ (𝑘(𝑖) − 1)𝑦𝑖𝑘𝑖

𝑛′

𝑘𝑖=𝑘(𝑖)𝑖∈𝑊𝑝

+ ∑ ∑ 𝑘𝑖𝑦𝑖𝑘𝑖

𝑛′−𝑘𝑚𝑖𝑛−1

𝑘𝑖=1𝑖∈{𝑀−𝑊𝑝}

+ ∑ ∑ (𝑛 − 𝑛′)𝑦𝑖𝑘𝑖

𝑛

𝑘𝑖=𝑛−𝑛′+𝑘𝑚𝑖𝑛+1𝑖∈𝑀

+ ∑(𝑛 − 𝑛′ + 𝑘𝑚𝑖𝑛)𝑦𝑖𝑛

𝑖∈𝑀

+ (𝑛′ − 𝑘𝑚𝑖𝑛).              (57) 

Proposition 3.3 Every (z, y)H(z, y) satisfies (57). 

Proof: All feasible integer integer solutions to (Pzy) consist of at least one of the following partial solutions: 

I) (z, y)p1: 𝑦𝑖𝑘𝑖
 = 1 for some iM, ki ≥ 𝑛 − 𝑛′ + 𝑘𝑚𝑖𝑛 + 1, 

II) (z, y)p2: 𝑦𝑖𝑘𝑖
 = 1 for some iM, 𝑛′+1 ≤ ki ≤ 𝑛 − 𝑛′ + 𝑘𝑚𝑖𝑛, 

III)  (z, y)p3: 𝑦𝑖𝑘𝑖
 = 1 for some iWp, k(i) ≤ ki ≤ 𝑛′, 

IV) (z, y)p4: 𝑦𝑖𝑘𝑖
 = 1 for some iWp, 1 ≤ ki ≤ k(i)-1, and 
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V) (z, y)p5: 𝑦𝑖𝑘𝑖
 = 1 for some i{M-Wp}, 1 ≤ ki ≤ n’-𝑘𝑚𝑖𝑛-1. 

It then suffices to show that feasible solutions that correspond to (z, y)p1, (z, y)p2, (z, y)p3 and (z, y)p4, all 

satisfy (57). 

Consider first feasible solutions consisting of (z, y)p1. In such solutions, let Vp{Wp-i} and U{M-Wp} 

denote active agents, i.e., 𝑦𝑖′𝑘
𝑖′

=1 for each i’Vp, and 𝑦𝑖"𝑘
𝑖"

=1 for each i”U. Consider first the situation 

in which U = . If n’-𝑘𝑚𝑖𝑛>k(i’) for some i’Vp, then the r-h-s of (57) is at least (n-n’)+k(i’)-1+(n’-𝑘𝑚𝑖𝑛) 

≥ n-1, since k(i’) ≥ 𝑘𝑚𝑖𝑛. Here, since the assignment of j(i’) is hidden from i’ and i, the l-h-s of (57) is at 

most n-1 and therefore such solutions satisfy it. If n’-𝑘𝑚𝑖𝑛≤k(i’) for all i’Vp, then the r-h-s of (57) is (n-

n’)+(n’-𝑘𝑚𝑖𝑛) = n-𝑘𝑚𝑖𝑛. Here, the assignment of all jHq(2) is hidden, and therefore the maximum value 

the l-h-s of (57) can take is n-𝑘𝑚𝑖𝑛. Therefore, (57) is satisfied. Next, consider the case where Vp = . Here, 

the r-h-s value of (57) is (n-n’)+(n’-𝑘𝑚𝑖𝑛)+∑ 𝑘𝑖"𝑖"∈𝑈  = n-𝑘𝑚𝑖𝑛+∑ 𝑘𝑖"𝑖"∈𝑈 . The maximum value the l-h-s of 

(57) can take is n-𝑘𝑚𝑖𝑛, since only the assignment of all jobs jHq(2) are hidden, (57) is satisfied.  

Next, consider feasible solutions that contain (z, y)p2. Here, 𝑛′+1 ≤ ki ≤ n-n’+𝑘𝑚𝑖𝑛 for some iM. The 

‘contribution’ of (z, y)p2 to the l-h-s and r-h-s of (57) is zero. Similarly, with (z, y)p5, its maximum 

contribution towards the l-h-s of (57) matches its contribution towards its r-h-s. Hence, validity of (57) does 

not depend on (z, y)p2 or (z, y)p5. Finally, consider feasible solutions containing (z, y)p3, along with (z, y)p4. 

In such a case, the maximum value the l-h-s of (57) can take, occurs when each j(i’)Hq(1) is assigned to 

i’Wp(1), while all jHq(2) is assigned to a iWp(2). Here, the assignment of j(i)Hq(2) to i is hidden. 

Therefore, the l-h-s of (57) is n’-1, while the r-h-s is (k(i)-1+n’-𝑘𝑚𝑖𝑛). Since k(i) ≥ 𝑘𝑚𝑖𝑛, (57) is satisfied. 

Using a line of argument similar to that presented in the proof of Theorem 3.1 for (43), the same can be 

shown to hold true for (57). 

Theorem 3.3 The Partial p-ACM inequality-Case II) is a non-trivial facet of H(z, y). 

The following example illustrates the construction of (57). 

Example 8. Let Wp = {1, 2, 3, 4}, M-Wp = {5}, N’ = {1,…, 4}, k(i) = 2, for i = 1, …, 4, and N–N’ = {5,…, 

9}. Consequently, 𝑘𝑚𝑖𝑛 = |Hq(2)| = 2, while β0 = |Hq(1)| = (𝑛′ − 𝑘𝑚𝑖𝑛) = 2. Let Hq(2) = {1, 2}, Hq(1) = {3, 

4}, j(1) = 1, j(2) = 2, j(3) = 3 and j(4) = 4. The inequality (57) that results is: 

∑ 𝑧5𝑗1

𝑗∈{𝑁−𝐻𝑞(2)}

+ ∑ ∑ 𝑧𝑖𝑗8

𝑗∈{𝑁−𝐻𝑞(2)}𝑖∈𝑀

+ 𝑧341 + 𝑧441 + ∑ ∑ 𝑧1𝑗𝑘𝑖

4

𝑘𝑖=2𝑗∈{𝑁′−1}

+ ∑ ∑ 𝑧2𝑗𝑘𝑖

4

𝑘𝑖=2𝑗∈{𝑁′−2}

+ ∑ ∑ 𝑧3𝑗𝑘𝑖

4

𝑘𝑖=2𝑗∈{𝑁′−3}

+ ∑ ∑ 𝑧4𝑗𝑘𝑖

4

𝑘𝑖=2𝑗∈{𝑁′−4}

+ ∑ ∑ 𝑧𝑖𝑗9

𝑗∈𝑁𝑖∈𝑀

≤ 𝑦51 + ∑ ∑ 𝑦𝑖𝑘𝑖

4

𝑘𝑖=2𝑖∈𝑊𝑝

+ ∑ 5𝑦𝑖8

𝑖∈𝑀

+ ∑ 7𝑦𝑖9

𝑖∈𝑀

+ 2. 
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A fractional solution (z, y)fH(z, y) that violates the inequality above is: i) 𝑦55 = 1, 𝑧555 = 𝑧565 = 𝑧575 = 

𝑧585 = 𝑧595 = 1, ii) 𝑦12 = 𝑦22 = 1/3, 𝑦32 = 𝑦42 = 5/12, 𝑦31 = 𝑦41 = 1/2, iii) 𝑧212 = 1/2, 𝑧312 =𝑧412 = 1/4, 

𝑧122 = 1/2, 𝑧322 =𝑧422 = 1/4, and iv) 𝑧331 = 1/2, 𝑧132 = 𝑧232 = 𝑧432 = 1/6, 𝑧441 = 1/2, 𝑧142 = 𝑧242 = 𝑧342 = 

1/6. With this fractional solution, the l-h-s of the above inequality is 9, while the r-h-s is 8 1/2, resulting in 

a violation of 1/2. Figure 6 illustrates the fractional part of (z, y)f.      

 

Figure 6. Illustration of the fractional solution in Example 8 in which p = 4 and n’ = 4. 

The next example illustrates a fractional solution in which n’ < p. 

Example 9. The problem instance is identical to that in Example 8, except that M-Wp = {4}, N’ = {1,.., 3} 

and N-N’ = {4,…, 8}. As before, k(i) = 2, for i = 1, …, 4, and 𝑘𝑚𝑖𝑛 = |Hq(2)| = 2. Therefore, β0 = |Hq(1)| = 

(𝑛′ − 𝑘𝑚𝑖𝑛) = 1. Let Hq(2) = {1, 2}, Hq(1) = {3}, j(1) = 2, j(2) = 2, j(3) = 1 and j(4) = 3. The inequality 

(57) that results is: 

∑ ∑ 𝑧𝑖𝑗8

𝑗∈𝑁𝑖∈𝑀

+ 𝑧341 + ∑ ∑ 𝑧1𝑗𝑘𝑖

3

𝑘𝑖=2𝑗∈{𝑁′−2}

+ ∑ ∑ 𝑧2𝑗𝑘𝑖

3

𝑘𝑖=2𝑗∈{𝑁′−2}

+ ∑ ∑ 𝑧3𝑗𝑘𝑖

3

𝑘𝑖=2𝑗∈{𝑁′−1}

+ ∑ ∑ 𝑧4𝑗𝑘𝑖

3

𝑘𝑖=2𝑗∈{𝑁′−3}

≤ ∑ ∑ 𝑦𝑖𝑘𝑖

3

𝑘𝑖=2𝑖∈𝑊𝑝

+ ∑ 7𝑦𝑖8

𝑖∈𝑀

+ 1. 

The following fractional solution that violates the above inequality is: i) 𝑦45 = 1, 𝑧445 = 𝑧455 = 𝑧465 = 𝑧475 

= 𝑧485 = 1, ii) 𝑦12 = 𝑦22 = 1/4, 𝑦32 = 𝑦42 = 1/2, and iii) 𝑧412 = 1/2, 𝑧112 =𝑧212 = 1/4, 𝑧322 =𝑧422 = 1/2, 𝑧332 

= 1/2, 𝑧132 = 𝑧232 = 1/4. This fractional solution violates the above inequality by 1/2, with the l-h-s equal 

to 8, and the r-h-s equal to 7 ½.           

It is indeed noteworthy that the Partial p-ACM inequality-Case II) subsumes the odd-hole inequalities of 

Cornuéjols, G. and Thizy [7] for those cases in which n’ = p and odd. To illustrate, consider the instance, n 

= n’ = p = 3, with k(i) = 2 for i = 1,…, 3. One form of the odd-hole inequality that applies in (Pxy) is: 𝑥21 +

𝑥31 + 𝑥12 + 𝑥32 + 𝑥13 + 𝑥23 ≤ 𝑦1 + 𝑦2 + 𝑦3 + 1. With Partial p-ACM inequality-Case II), by setting β0 

= |Hq(1)| = 1, Hq(2) = {1, 2}, Hq(1) = {3}, j(1) = 1, j(2) = 2 and j(3) = 3, the resulting inequality obtained 
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is: 𝑧111 + 𝑧212 + 𝑧312 + 𝑧122 + 𝑧322 + 𝑧132 + 𝑧232 ≤ 𝑦12 + 𝑦22 + 𝑦32 + 1. The fractional solution: 𝑦12 = 

𝑦22 = 𝑦32 = 1/2, 𝑧212 =𝑧312 = 𝑧122 = 𝑧322 = 𝑧132 = 𝑧232 = 1/2, violates the above inequality by 1/2, the 

same as with the odd-hole inequality.  

 

4.0  Concluding Remarks 

In this paper, a new extended formulation of the Single-Source Un-capacitated Facility Location Problem 

(SSUFLP), denoted as (Pzy), is presented and studied in depth. This formulation incorporates the notion of 

cardinality, defined as the number of customers (or jobs) assigned to a facility (or agent). Consequently, 

the size of this formulation is O(mn2) as opposed to O(mn) for the traditional formulation. The polytope 

defined by the convex hull of all feasible solutions to (Pzy) is examined. In this study, besides trivial facets, 

all non-trivial facets are identified, which is shown to be canonical. By this we mean that the coefficients 

of all variables that describe the assignment of jobs to agents are either 0 or 1. This greatly simplifies the 

structure of non-trivial facets, which we refer to as p-Agent Cardinality Matching (p-ACM) inequalities. 

These inequalities are defined around N’N jobs and WpM agents. This in turn is motivated by isolating 

the fractional part of any feasible solution to the LP relaxation of our extended formulation. That is, all the 

variables which are non-integer are associated with N’ and Wp, which are rendered infeasible by the p-ACM 

inequality. 

We present two broad classes of p-ACM inequalities: Complete p-ACM inequalities and Partial p-ACM 

inequalities. Complete p-ACM inequalities apply when n’ ≥ 2p, while Partial p-ACM inequalities apply in 

cases where n’ ≤ 2p-1. In addition, two varieties of Partial p-ACM inequalities are presented, one in which 

p+1 ≤ n’ ≤ 2p-1, and the other in which n’ ≤ p. All the inequalities presented are facets of the polytope 

defined by the convex hull of feasible solutions to (Pzy). Clearly then, the p-ACM inequalities presented 

cover all possible combinations of N’ and Wp. Therefore, they represent all non-trivial facets of the polytope 

defined by the convex hull of feasible solutions to (Pzy). 

In spite of the p-ACM inequalities, along with the trivial facets, completely describing the polytope 

associated with (Pzy), two challenges need to be addressed in order to devise an effective branch-and-cut 

strategy. First, as a practical matter, the extended formulation, even if polynomial in size, is too large to be 

a viable alternative to the traditional formulation, even for reasonable sized problem. One way to overcome 

this issue is to not incorporate the entire cardinality set of ki = 1,…, n, but a limited cardinality set. This 

involves solving the LP relaxation of the traditional formulation (Pxy) first. Let (x*, y*) denote the LP 

solution obtained. For each iM, the summation ∑ 𝑥𝑖𝑗
∗

𝑗∈𝑁  = 𝑛𝑖
∗ is determined. Typically, 𝑛𝑖

∗ will be 

fractional. A relaxed version of (Pzy) is constructed in which limited levels of cardinality around ⌊𝑛𝑖
∗⌋l. For 

instance, with l = 2, 5 levels of cardinality for each iM would be: i) ki1 = ⌊𝑛𝑖
∗⌋-2, ii) ki2 = ⌊𝑛𝑖

∗⌋-1, iii) ki3 = 

⌊𝑛𝑖
∗⌋, iv) ki4 = ⌊𝑛𝑖

∗⌋+1, and v) ki5 = ⌊𝑛𝑖
∗⌋+2. The relaxed version of (Pzy) consists of z and y variables, each 
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associated with cardinality set: ki1, ki2, ki3 and ki4. The resulting formulation is identical to that of (Pzy), 

except for (7). Here, associated with 𝑖1-𝑘𝑖1 and 𝑖4-𝑘𝑖4, the constraints are, 

∑ 𝑧𝑖𝑗𝑘𝑖1

𝑗∈𝑁

≤ 𝑘𝑖𝑦𝑖𝑘𝑖1
                         ∀𝑖 ∈ 𝑀,   𝑎𝑛𝑑                                                                               (58) 

∑ 𝑧𝑖𝑗𝑘𝑖4

𝑗∈𝑁

≥ 𝑘𝑖𝑦𝑖𝑘𝑖4
                         ∀𝑖 ∈ 𝑀.                                                                                         (59) 

The size of this relaxed version of (Pzy) is O(lmn). The other challenge is to devise a separation algorithm 

to identify an appropriate p-ACM inequality that renders a current LP solution infeasible. That is an issue 

that falls under the realm of future research endevour. 
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