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ABSTRACT

Our focus in this thesis is to contribute to the extant literature by proposing two methods
of structural break detection in a multivariate time series based on two dimension reduc-
tion techniques: t-distributed Stochastic Neighbor Embedding (t-SNE) and Independent
Component Analysis (ICA). We also apply cumulative sums based Binary Segmentation
to detect the location of breakpoints. Both the methods proposed by us prove to be
efficient when compared with a few existing techniques of changepoint detection. Per-
formance of each of the methods is compared based on the values of Rand Index (RI),
Adjusted Rand Index (ARI), average time take taken by the method (ATT) and the
number of changepoints estimated (ACP) by each procedure.

Based on simulation studies, it is observed that the t-SNE based method is better than
the several existing ones in terms of accuracy as well as the time taken. It rightly detects a
break when there is a change in the generalized autoregressive conditional heteroskedastic
(GARCH) structure of the time series. For generalization, we consider both Gaussian
and student’s ¢ as conditional distributions for GARCH models. A change in the GARCH
structure is very apparent in a financial time series and our method successfully detects
the break with better precision. We administer the t-SNE based breakpoint location
method on a real data set of five cryptocurrencies to fathom its volatility dynamics.
First, our method rightly ascertains the location of changepoints which coincides with
the cryptocurrency boom of 2017 and the COVID-19 pandemic. This divides the time
series into three subsamples (SS1, SS2 and SS3). To add to that, we also model the

conditional variances of this dataset using EGARCH models augmented by several heavy
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tailed residual distributions. Residual distributions play an important role in modelling
the data appropriately for better forecasting. It is observed that for SS2 which is longer in
duration and has low volatility, Exponential GARCH (EGARCH) models with Johnson’s
Sy distribution (JSU) and Pearson Type IV distribution (PSIV) provide a better fit, while
for SS3, which is more volatile and shorter in duration, both EGARCH and generalised
autroregressive score (GAS) models perform well with skewed student’s t-distribution
(SST), skewed generalised error distribution (SGED). The estimation of Group Transfer
Entropy breaks the myth that Bitcoin generates risk spillovers to other currencies.
Detection of changepoints based on ICA demonstrates competitive and even better
performance sometimes when compared with the proposed t-SNE based procedure. The
computation time taken by ICA is very less. Though t-SNE based method worked better
for smaller samples sometimes, both the proposed methods are competitive. We verify
our claims by extensive simulation and application on real datasets. We apply the ICA
based technique of changepoint estimation on several multistock portfolio and it rightly
detects the position of changepoints which coincides with the recession of 2008. The

information flow is also observed to traverse from the west to east.



